Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Model of the fine-grain component of martian soil based on Viking lander data

An Erratum to this article was published on 07 December 1978

Abstract

The value of the sorbtional specific surface of the martian soil (from CO2 evolution in GEX (gas exchange experiments) of Viking craft) is more than an order of magnitude greater than the value of its geometrical specific surface (from granulometry). An hypothesis is therefore proposed here to explain the microporous structure of the soil grains. Absence of O2 and CO2 in GCMS (gas chromatography–mass spectrometry) (heating up to 500 °C) gives some indication of the closeness of the pores. The origin of such soil structure and the filling of pores with CO2 and O2 due to the effects of various forms of radiation are discussed. The similarity between kinetics in LR (labelled release) and GEX as well as their correspondence with the filtration curve for water vapour migrating through the soil sample suggest that both the formation and the diffusion of the gases are rapid processes. Displacement desorption by water vapour by simultaneous opening of the pores due to the Rebinder effect, is suggested as the natural mechanism for outgassing in the GEX and LR ‘Viking’ experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klein, H. P. et al. Science 194, 99–105 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Metz, W. D. Science 194, 819 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Levin, G. et al. Science 194, 1322 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Klein, H. P. et al. Nature 262, 24–27 (1976).

    Article  ADS  Google Scholar 

  5. Eglington, G. & Maxwell, R. Nature 265, 499 (1977).

    Article  ADS  Google Scholar 

  6. Bleman, K. et al. J. geophys. Res. 82, 4641 (1977).

    Article  ADS  Google Scholar 

  7. Oyama, V. I. et al. Nature 265, 110–114 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Holmes, H. F. et al. Earth planet. Sci. Lett. 28, 33–36 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Chernyak, Yu. B. & Yakhot, V. S. Sov. J.: Vestnik, Mosk. Univ. Phis. Ast. 14, 112–115 (1972).

    Google Scholar 

  10. Chernyak, Yu. B. et al. Sov. J.: Vestnik Mosk. Univ. Phis. Astr. 18, 46–54; 18, 115–125 (1977).

    Google Scholar 

  11. Upit, G. P. Dokl. Akad. Nauk SSSR 174 (1976).

  12. Gibbson, E. K., Jr Phys. Earth planet. Inter. 15, 303 (1977).

    Article  ADS  Google Scholar 

  13. Chernyak, Yu. B. & Nussinov, M. D. Nature 264, 241 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Surkov, Yu. A. et al. Sov. J. Geohim. 1516–1523 (1974).

  15. Rossing, T. D. et al. J. Vac. Sci. Technol. 14, 550–555 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Dienes, G. J. & Vineyard, G. H. Radiation Effects in Solids, Ch. 6, Wiley, New York, 1957).

    MATH  Google Scholar 

  17. Gegusin, Ya. E. in Physics of Sintering (Nauka, Moscow, 1967).

    Google Scholar 

  18. Kenty, G. Proc. 13th A. MIT Conf. on Phys. Elect., 138 (1953).

  19. Fuller, E. L. J. Coll. Interf. Sci. 55, 358–369 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Holmes, H. F. et al. Earth planet. Sci. Lett. 19, 90–96 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Rebinder, P. A. & Shukin, E. D. Usp. fiz. Nauk 108, 3 (1972).

    Article  CAS  Google Scholar 

  22. Barenblatt, G. I. et al. Theory of Non-stationary Filtration of Liquids and Gases Nedra Moscow (1972).

    Google Scholar 

  23. Morse, Ph. M. & Feshbach, H. Methods of Theoretical Physics (McGraw Hill, New York, 1953).

    MATH  Google Scholar 

  24. Shorthill, R. W. et al. Science 194, 91–97 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Chandrasekhar, S. Rev. mod. Phys. 15, 1–89 (1943).

    Article  ADS  Google Scholar 

  26. De Boer, The Dynamical Character of Adsorption (Clarendon Oxford 1953).

    Google Scholar 

  27. Pollack, J. B. et al. J. geophys. Res. 75, 7480 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Fanale, F. P. & Cannon, W. A. J. geophys. Res. 79, 3397–3402 (1974).

    Article  ADS  CAS  Google Scholar 

  29. Mutch, T. A. et al. Science 194, 87–91 (1976).

    Article  ADS  CAS  Google Scholar 

  30. Moros, V. I. Sov. J. Kosmich. Issledovaniya 14, 406–417 (1976).

    ADS  Google Scholar 

  31. Huguenin, R. et al. Bull. Am. astr. Soc. 9, part 1 (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nussinov, M., Chernyak, Y. & Ettinger, J. Model of the fine-grain component of martian soil based on Viking lander data. Nature 274, 859–861 (1978). https://doi.org/10.1038/274859a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274859a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing