Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comparison of the predicted model of α-lytic protease with the X-ray structure

Abstract

THERE are several methods for the prediction of secondary structural features of protein molecules from the amino acid sequence1–5. Application of these methods to proteins of unknown tertiary structure has met with mixed results6,7, and it has been suggested that it is the protein structural type which will determine which predictive method will succeed8. There is also great interest in the ab initio prediction of tertiary structures of proteins9–11, but this has not yet been achieved. One possible method for predicting the tertiary structure of an enzyme is by the use of a known amino acid sequence and a previously determined tertiary structure of another related homologous isofunctional enzyme. This method was used by McLachlan and Shotton12 in an attempt to fit the α-lytic protease sequence into the polypeptide chain folding of elastase13 and chymotrypsin14. It has also been used to predict the tertiary structure of troponin C (ref. 15). Now that the structure of α-lytic protease is known16 to a resolution of 2.8 Å, we can assess the accuracy of such predictions. The tertiary structures of two related bacterial serine proteases, SGPA and SGPB and their structural relationship to the pancreatic enzymes have been published previously17–19. Many of the conclusions drawn from those studies are also applicable to the present discussion on α-lytic protease and need not be repeated. Rather, we shall consider the basic premise of sequence homology in phylogenetically distant proteins being used to deduce tertiary structures. A recent realignment20 of the amino acid sequences of Gly-Asp-Ser-Gly-Gly proteases, which was based on the known topological equivalences of α-carbon atoms, indicates an overall sequence identity of only 18% between α-lytic protease and elastase. We show here that this low value is independent of the environment of the topologically equivalent polypeptide chains (whether the residues are internal or external) and that the sequence identity is associated with only those residues which are in the immediate vicinity of the active site quartet, Asp 102, His 57, Ser 195 and Ser 214.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 222–245 (1974).

    Article  CAS  Google Scholar 

  2. Lewis, P. N., Momany, F. A. & Sheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 68, 2293–2298 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Lim, V. I. J. molec. Biol. 88, 873–878 (1974).

    Article  CAS  Google Scholar 

  4. Finkelstein, A. V. & Ptisyn, O. B. J. molec. Biol. 62, 613–616 (1971).

    Article  CAS  Google Scholar 

  5. Kabat, E. A. & Wu, T. T. Proc. natn. Acad. Sci. U.S.A. 70, 1473–1478 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Schulz, G. E. et al. Nature 250, 140–142 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Matthews, B. W. Biochim. biophys. Acta 405, 442–451 (1975).

    Article  CAS  Google Scholar 

  8. Schulz, G. E. Angew. Chemie (Intl Edn) 16, 23–32 (1977).

    Article  CAS  Google Scholar 

  9. Levitt, M. & Warshel, A. Nature 253, 694–698 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Kuntz, I. D. et al. J. molec. Biol. 106, 983–994 (1976).

    Article  CAS  Google Scholar 

  11. Ptitsyn, O. B. & Rashin, A. A. Biophys. Chem. 3, 1–20 (1975).

    Article  CAS  Google Scholar 

  12. McLachlan, A. D. & Shotton, D. M. Nature 229, 202–205 (1971).

    Article  CAS  Google Scholar 

  13. Shotton, D. M. & Watson, H. C. Nature 225, 811–816 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Birktoft, J. J., Blow, D. M., Henderson, R. & Steitz, T. A. Phil Trans. R. Soc. B 257, 67–76 (1970).

    CAS  Google Scholar 

  15. Kretsinger, R. H. & Barry, C. D. Biochim. biophys. Acta 405, 40–52 (1975).

    Article  CAS  Google Scholar 

  16. Brayer, G. D., Delbaere, L. T. J. & James, M. N. G. J. molec. Biol. (in the press).

  17. Delbaere, L. T. J., Hutcheon, W. L. B., James, M. N. G. & Thiessen, W. E. Nature 257, 758–763 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Brayer, G. D., Delabere, L. T. J. & James, M. N. G. J. molec. Biol. 124, 261–283 (1978).

    Article  CAS  Google Scholar 

  19. Delbaere, L. T. J., Brayer, G. D. & James, M. N. G. Can. J. Biochem. 57, 135–144 (1979).

    Article  CAS  Google Scholar 

  20. James, M. N. G., Delbaere, L. T. J. & Brayer, G. D. Can. J. Biochem. 56, 396–402 (1978).

    Article  CAS  Google Scholar 

  21. Olson, M. O. J., Nagabhushan, N., Dzwiniel, M., Smillie, L. B. & Whitaker, D. R. Nature 228, 438–442 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Kaplan, H. & Whitaker, D. R. Can. J. Biochem. 47, 305–316 (1969).

    Article  CAS  Google Scholar 

  23. Sawyer, L. et al. J. molec. Biol. 118, 137–208 (1978).

    Article  CAS  Google Scholar 

  24. Rossmann, M. G. & Argos, P. J. biol. Chem. 250, 7525–7532 (1975).

    CAS  PubMed  Google Scholar 

  25. Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T. & Xuong, N. H. Biochemistry 9, 1997–2009 (1970).

    Article  CAS  Google Scholar 

  26. Bode, W., Schwager, P. & Huber, R. J. molec. Biol. 118, 99–112 (1978).

    Article  CAS  Google Scholar 

  27. Narayanan, A. S. & Anwar, R. A. Biochem. J. 114, 11–17 (1969).

    Article  CAS  Google Scholar 

  28. Birktoft, J. J. & Blow, D. M. J. molec. Biol. 68, 187–240 (1972).

    Article  CAS  Google Scholar 

  29. Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T. & Kraut, J. J. biol. Chem. 252, 8875–8883 (1977).

    CAS  PubMed  Google Scholar 

  30. Biochem J. 113, 1–4 (1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DELBAERE, L., BRAYER, G. & JAMES, M. Comparison of the predicted model of α-lytic protease with the X-ray structure. Nature 279, 165–168 (1979). https://doi.org/10.1038/279165a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279165a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing