Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Steps of mRNA translocation in protein biosynthesis

Abstract

The translocation of the messenger RNA relative to the ribosome during peptide synthesis represents an example of a mechano-chemical reaction in which the chemical bond energy of GTP is transformed into coordinated motion. Such transformations also occur during the beating of cilia and flagellae, the contraction of muscle and the migration of chromosomes in cell division. In protein synthesis the functional, geometric and energetic conditions for this transformation are well defined. For each peptide bond formed, the ribosome moves one codon along the mRNA (towards the 3′ end) and one molecule of GTP is hydrolysed. Although the basic requirements of this reaction have been elucidated, the mechanism is still unresolved1,2. We demonstrate here that translocation can be analysed as a series of binding equilibria shifted by one irreversible, GTP-consuming step. The shift in the binding equilibrium is induced by the transfer of the peptidyl moiety to the (A) site-bound aminoacy(AA)-tRNA. This results in the A site-bound tRNA having an increased affinity for the high-affinity (P) site, and a strengthened association with the mRNA. Elongation factor (EF) G·GTP catalyses removal of the deacylated tRNA, empties the P site and at the same time loosens ribosome–mRNA association. The result of these changes is that peptidyl(PP)-tRNA · mRNA is shifted from the A site to the P site, binding of AA-tRNA · EF-Tu · GTP to the vacant A site ensuring that the process is irreversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weissbach, H. in Ribosomes: Structure, Function, and Genetics (eds Chambliss, G. et al.) 377–411 (University Park Press, Baltimore, 1979).

    Google Scholar 

  2. Kaziro, Y. in Molecular Biology, Biochemistry and Biophysics Vol. 32 (eds Chapeville, F. & Haenni, A.-L.) 333–346 (Springer, Berlin, 1980).

    Google Scholar 

  3. Schmitt, M., Möller, A., Riesner, D. & Gassen, H. G. Eur. J. Biochem. (in the press).

  4. Lührmann, R., Eckhardt, H. & Stöffler, G. Nature 280, 423–425 (1979).

    Article  ADS  Google Scholar 

  5. Matzke, A. J. M., Barta, A. & Kuechler, E. Proc. natn. Acad. Sci. U.S.A. 77, 5110–5114 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Riddle, D. L. & Carbon, J. Nature new Biol. 242, 230–232 (1973).

    Article  CAS  Google Scholar 

  7. Holschuh, K., Bonin, J. & Gassen, H. G. Biochemistry 19, 5857–5864 (1980).

    Article  CAS  Google Scholar 

  8. Holschuh, K. & Gassen, H. G. FEBS Lett. 110, 169–172 (1980).

    Article  CAS  Google Scholar 

  9. Gassen, H. G. Prog. Nucleic Acid Res. molec. Biol. 24, 57–86 (1980).

    Article  CAS  Google Scholar 

  10. Rychlik, I. Biochim. biophys. Acta 114, 425–427 (1966).

    Article  CAS  Google Scholar 

  11. Noll, M., Hapke, B., Schreier, M. H. & Noll, H. J. molec. Biol. 75, 281–294 (1973).

    Article  CAS  Google Scholar 

  12. Linde, R., Khanh, N. Q., Lipecky, R. & Gassen, H. G. Eur. J. Biochem. 93, 565–572 (1979).

    Article  CAS  Google Scholar 

  13. Arai, K. I., Kawakita, M. & Kaziro, Y. J. biol. Chem. 247, 7029–7037 (1972).

    CAS  PubMed  Google Scholar 

  14. Sternbach, H. & Sprinzl, M. Meth. Enzym. 59, 182–190 (1978).

    Google Scholar 

  15. Haenni, A.-L. & Chapeville, F. Biochim. biophys. Acta 114, 135–148 (1966).

    Article  CAS  Google Scholar 

  16. Gassen, H. G. & Leifer, W. Z. analyt. Chem. 252, 337–343 (1970).

    Article  CAS  Google Scholar 

  17. Hamburger, A. D., De Groot, N. & Lapidot, Y. Biochim. biophys. Acta 213, 115–123 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holschuh, K., Riesner, D. & Gassen, H. Steps of mRNA translocation in protein biosynthesis. Nature 293, 675–677 (1981). https://doi.org/10.1038/293675a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293675a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing