Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal stresses in subducting lithosphere can explain double seismic zones

Abstract

The discovery of double-planed zones of intermediate-depth seismicity associated with subducting oceanic lithosphere (refs 1–7 and L.S.H. and K.H.J., in preparation) has generated much interest in the origin and distribution of stresses in descending plates. Several mechanisms have been proposed to explain why double zones occur8. Here we investigate the role of thermal stresses for the state of stress in a descending plate and test whether they can account for the observed characteristics of double seismic zones. By modelling the descending slab as a thin elastic plate and using the temperatures in the slab estimated by Toksöz et al.9, we find that the polarities of thermally generated stresses agree with those obtained from the focal mechanisms of earthquakes in the two zones. Thermal stresses also can explain the separation between the two zones of seismicity at shallow depths and their gradual merging at greater depth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sykes, L. R. J. geophys. Res. 71, 2981–3006 (1966).

    Article  ADS  Google Scholar 

  2. Veith, K. F. thesis, Southern Methodist Univ. (1974); EOS 58, 1232 (1977).

    Google Scholar 

  3. Isacks, B. L. & Barazangi, M. Island Arcs, Deep Sea Trenches and Back-Arc Basins Vol. 1, 99–114 (American Geophysical Union, Washington DC 1977).

    Book  Google Scholar 

  4. Engdahl, E. R. & Scholz, C. H. Geophys. Res. Lett. 4, 473–476 (1977).

    Article  ADS  Google Scholar 

  5. Hasegawa, A., Umino, N. & Takagi, A. Tectonophysics 47, 43–58 (1978).

    Article  ADS  Google Scholar 

  6. Samowitz, I. & Forsyth, D. J. geophys. Res. 86, 7013–7021 (1981).

    Article  ADS  Google Scholar 

  7. Reyners, M. & Coles, K. J. geophys. Res. 87, 356–366 (1982).

    Article  ADS  Google Scholar 

  8. Fujita, K. & Kanamori, H. Geophys. J. R. astr. Soc. 66, 131–156 (1981).

    Article  ADS  Google Scholar 

  9. Toksöz, M. N., Minear, J. W. & Julian, B. R. J. geophys. Res. 76, 1113–1138 (1971).

    Article  ADS  Google Scholar 

  10. Timoshenko, S. P. & Goodier, J. N. Theory of Elasticity 3rd edn, 435–436 (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  11. Resnick, R. & Halliday, D. Physics Vol. 1, 543 (Wiley, New York, 1966).

    Google Scholar 

  12. Skinner, B. J. Mem. geol. Soc. Am. 97, 78–96 (1966).

    Google Scholar 

  13. Birch, F. Mem. geol. Soc. Am. 97, 107–173 (1966).

    Google Scholar 

  14. Bodine, J. H., Steckler, M. S. & Watts, A. B. J. geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  15. Goetze, C. Phil. Trans. R. Soc. A288, 99–119 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Wyss, M. & Molnar, P. Phys. Earth planet. Inter. 6, 279–292 (1972).

    Article  ADS  Google Scholar 

  17. Chung, W.-Y. & Kanamori, H. Phys. Earth planet. Inter. 23, 134–159 (1980).

    Article  ADS  Google Scholar 

  18. Yang, M., Toksöz, M. N. & Smith, A. T. EOS 58, 1233–1234 (1977).

    Google Scholar 

  19. Hamaguchi, H., Goto, K. & Suzuki, Z. IASPEI 21st Assembly, Pap. A4.26 (Department of Geophysics, University of W. Ontario, London, Ontario 1981).

    Google Scholar 

  20. Richter, F. & McKenzie, D. J. Geophys. 44, 441–471 (1978).

    Google Scholar 

  21. Sleep, N. H. J. geophys. Res. 84, 4565–4571 (1979).

    Article  ADS  Google Scholar 

  22. Davies, G. F. J. geophys. Res. 85, 6304–6318 (1980).

    Article  ADS  Google Scholar 

  23. Turcotte, D. L. & Schubert, G. J. geophys. Res. 78, 5876–5886 (1973).

    Article  ADS  Google Scholar 

  24. Anderson, R. N., DeLong, S. E. & Schwarz, W. M. J. Geol. 88, 445–451 (1980).

    Article  ADS  Google Scholar 

  25. Hsui, A. T. & Toksöz, M. N. Tectonophysics 60, 43–60 (1979).

    Article  ADS  Google Scholar 

  26. Davies, J., Sykes, L., House, L. & Jacob, K. J. geophys. Res. 86, 3821–3855 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

House, L., Jacob, K. Thermal stresses in subducting lithosphere can explain double seismic zones. Nature 295, 587–589 (1982). https://doi.org/10.1038/295587a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295587a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing