Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An HGF–MSP chimera disassociates the trophic properties of scatter factors from their pro-invasive activity

Abstract

Hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP) have an intrinsic dual nature: they are trophic cytokines preventing apoptosis on one side and scatter factors promoting invasion on the other. For therapeutic use, their anti-apoptotic activity must be separated from their pro-invasive activity. To this end, we engineered chimeric factors containing selected functional domains of HGF and/or MSP in different combinations, and tested their biological activity. Here we present a chimeric cytokine derived from the α-chains of HGF and MSP, named Metron factor 1 for its ability to concomitantly activate the HGF receptor (Met) and the MSP receptor (Ron). We provide evidence that Metron factor 1 prevents apoptosis and stimulates cell proliferation at nanomolar concentrations, but is devoid of any pro-invasive activity. In an in vivo murine model of drug-induced nephrotoxicity, intravenous injection of recombinant Metron factor 1 prevented renal damage and preserved tubular integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering and purification of MF-1.
Figure 2: MF-1 binds independently to the Met and Ron receptors.
Figure 3: Ligand cross-linking and receptor activation analysis.
Figure 4: MF-1 elicits a reduced signal downstream of Met and Ron.
Figure 5: Biological activity of MF-1.
Figure 6: MF-1 is a non-invasive cytokine.
Figure 7: MF-1 prevents drug-induced acute renal failure.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tamagnone, L. & Comoglio, P.M. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 8, 129–142 (1997).

    Article  CAS  Google Scholar 

  2. Rubin, J.S., Bottaro, D.P. & Aaronson, S.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta 1155, 357–371 (1993).

    CAS  PubMed  Google Scholar 

  3. Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–640 (1992).

    Article  CAS  Google Scholar 

  4. Zarnegar, R. & Michalopoulos, G. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J. Cell Biol. 129, 1177–1180 (1995).

    Article  CAS  Google Scholar 

  5. Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    Article  CAS  Google Scholar 

  6. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  CAS  Google Scholar 

  7. Brinkmann, V., Foroutan, H., Sachs, M., Weidner, K.M. & Birchmeier, W. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J. Cell Biology 131, 1573–1586 (1995).

    Article  CAS  Google Scholar 

  8. Berdichevsky, F., Alford, D., Souza, B. & Taylor-Papadimitriou, J. Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107, 3557–3568 (1994).

    CAS  PubMed  Google Scholar 

  9. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    Article  CAS  Google Scholar 

  10. Uehara, Y. et al. Placental defect and embryonal lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

    Article  CAS  Google Scholar 

  11. Takayama, H., La Rochelle, W.J., Anver, M., Bockman, D.E. & Merlino, G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc. Natl. Acad. Sci. USA 93, 5866–5871 (1996).

    Article  CAS  Google Scholar 

  12. Yang, Y. et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131, 215–226 (1995).

    Article  CAS  Google Scholar 

  13. Woolf, A.S. et al. Role of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J. Cell Biol. 128, 171–184 (1995).

    Article  CAS  Google Scholar 

  14. Naldini, L. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J. 11, 4825–4833 (1992).

    Article  CAS  Google Scholar 

  15. Gak, E., Taylor, W.G., Chan, A.M. & Rubin, J.S. Processing of hepatocyte growth factor to the heterodimeric form is required for biological activity. FEBS Lett. 311, 17–21 (1992).

    Article  CAS  Google Scholar 

  16. Kobayashi, T. et al. Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem. 269, 9817–9821 (1994).

    CAS  PubMed  Google Scholar 

  17. Lyon, M., Deakin, J.A., Mizuno, K., Nakamura, T. & Gallagher, J.T. Interaction of hepatocyte growth factor with heparan-sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 269, 11216–11223 (1994).

    CAS  PubMed  Google Scholar 

  18. Miyazawa, K., Shimomura, T., Naka, D. & Kitamura, N. Proteolytic activation of hepatocyte growth factor in response to tissue injury. J. Biol. Chem. 269, 8966–8970 (1994).

    CAS  PubMed  Google Scholar 

  19. Miyazawa, K., Shimomura, T. & Kitamura, N. Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J. Biol. Chem. 271, 3615–3618 (1996).

    Article  CAS  Google Scholar 

  20. Yanagita, K. et al. Hepatocyte growth factor may act as a pulmotrophic factor on lung regeneration after acute lung injury. J. Biol. Chem. 268, 21212–21217 (1993).

    CAS  PubMed  Google Scholar 

  21. Birchmeier, W. et al. Role of HGF/SF and c-Met in morphogenesis and metastasis of epithelial cells. Ciba Found. Symp. 212, 230–240 (1997).

    CAS  PubMed  Google Scholar 

  22. Vande Woude, G. et al. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found. Symp. 212, 119–130 (1997).

    CAS  PubMed  Google Scholar 

  23. Meiners, S., Brinkmann, V. Naundorf, H. & Birchmeier, W. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 16, 9–20 (1998).

    Article  CAS  Google Scholar 

  24. Jeffers, M., Rong, S. & Vande Woude, G.F. Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor–met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 16, 1115–1125 (1996).

    Article  CAS  Google Scholar 

  25. Koochepour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 57, 5391–5398 (1997).

    Google Scholar 

  26. Di Renzo, M.F. et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6, 1997–2003 (1991).

    CAS  PubMed  Google Scholar 

  27. Liu, C., Park, M. & Tsao, M.S. Overexpression of c-met proto-oncogene but not epidermal growth factor receptor or c-erbB-2 in primary human colorectal carcinomas. Oncogene 7, 181–185 (1992).

    CAS  PubMed  Google Scholar 

  28. Di Renzo, M.F. et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7, 2549–2553 (1992).

    CAS  PubMed  Google Scholar 

  29. Boix, L. et al. c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology 19, 88–91 (1994).

    Article  CAS  Google Scholar 

  30. Di Renzo, M.F. et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1, 147–154 (1995).

    CAS  PubMed  Google Scholar 

  31. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  Google Scholar 

  32. Michieli, P. et al. Mutant Met–mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18, 5221–5231 (1999).

    Article  CAS  Google Scholar 

  33. Date, K. et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 17, 3045–3054 (1998).

    Article  CAS  Google Scholar 

  34. Matsumoto, K. & Nakamura, T. HGF: its organotrophic role and therapeutic potential. Ciba Found. Symp. 212, 198–211 (1997).

    CAS  PubMed  Google Scholar 

  35. Bradbury, J. A two-pronged approach to the clinical use of HGF. Lancet 351, 272 (1998).

    Article  CAS  Google Scholar 

  36. Trusolino, L., Pugliese, L. & Comoglio, P.M. Interactions between scatter factors and their receptors: hints for therapeutic applications. FASEB J. 12, 1267–1280 (1998).

    Article  CAS  Google Scholar 

  37. Skeel, A. et al. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J. Exp. Med. 173, 1227–1234 (1991).

    Article  CAS  Google Scholar 

  38. Leonard, E.J. Biological aspects of macrophage-stimulating protein (MSP) and its receptor. Ciba Found. Symp. 212, 183–191 (1997).

    CAS  PubMed  Google Scholar 

  39. Wang, M.H. et al. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp. Cell Res. 226, 39–46 (1996).

    Article  CAS  Google Scholar 

  40. Banu, N. et al. Modulation of megakariocytopoiesis by human macrophage-stimulating protein, the ligand for the RON receptor. J. Immunology 156, 2933–2940 (1996).

    CAS  Google Scholar 

  41. Danilkovitch, A., Donley, S., Skeel, A. & Leonard, E.J. Two independent signaling pathways mediate the antiapoptotic action of macrophage-stimulating protein on epithelial cells. Mol. Cell. Biol. 20, 2218–2227 (2000).

    Article  CAS  Google Scholar 

  42. Wang, M.H. et al. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 266, 117–119 (1994).

    Article  CAS  Google Scholar 

  43. Gaudino, G. et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 13, 3524–3532 (1994).

    Article  CAS  Google Scholar 

  44. Iwama, A., Yamaguchi, N. & Suda, T. STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family. EMBO J. 15, 5866–5875 (1996).

    Article  CAS  Google Scholar 

  45. Gaudino, G. et al. The proto-oncogene RON is involved in development of epithelial, bone and neuro-endocrine tissues. Oncogene 11, 2627–2637 (1995).

    CAS  PubMed  Google Scholar 

  46. Matsumoto, K., Kataoka, H., Date, K. & Nakamura, T. Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J. Biol. Chem. 273, 22913–22920 (1998).

    Article  CAS  Google Scholar 

  47. Danilkovitch, A., Miller, M. & Leonard, E.J. Interaction of macrophage-stimulating protein with its receptor. Residues critical for β chain binding and evidence for independent α chain binding. J. Biol. Chem. 274, 29937–29943 (1999).

    Article  CAS  Google Scholar 

  48. Chirgadze, D.Y. et al. Insights into the structure of hepatocyte growth factor/scatter factor (HGF/SF) and implications for receptor activation. FEBS Lett. 430, 126–129 (1998).

    Article  CAS  Google Scholar 

  49. Shwall, R.H. et al. Heparin induces dimerization and confers proliferative activity onto the hepatocyte growth factor antagonists NK1 and NK2. J. Cell Biol. 133, 709–718 (1996).

    Article  Google Scholar 

  50. Medico, E., Michieli, P. Collesi, C. and Comoglio, P. Recombinant proteins derived from HGF and MSP. European Patent Applications PCT/EP99/00478 (WO99/38967) and PCT/EP99/00502 (WO99/38968).

  51. Follenzi, A. et al. Cross-talk between the proto-oncogenes Met and Ron. Oncogene 19, 3041–3049 (2000).

    Article  CAS  Google Scholar 

  52. Mark, M.R., Lokker, N.A., Zioncheck, T.F., Luis, E.A. & Godowski, P.J. Expression and characterization of hepatocyte growth factor receptor–IgG fusion proteins. Effects of mutations in the potential proteolytic cleavage site on processing and ligand binding. J. Biol. Chem. 267, 26166–26171 (1992).

    CAS  PubMed  Google Scholar 

  53. Medico, E. et al. The tyrosine kinase receptors Ron and Sea control “scattering” and morphogenesis of liver progenitor cells in vitro. Mol. Biol. Cell 7, 495–504 (1996).

    Article  CAS  Google Scholar 

  54. Kawaida, K., Matsumoto, K., Shimazu, H. & Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl. Acad. Sci. USA 91, 4357–4361 (1994).

    Article  CAS  Google Scholar 

  55. Maggiora, P. et al. Over-expression of the RON gene in human breast carcinoma. Oncogene 16, 2927–2933 (1998).

    Article  CAS  Google Scholar 

  56. Comoglio, P.M. Pathway specificity for Met signalling. Nature Cell Biol. 3, 161–162 (2001).

    Article  Google Scholar 

  57. Prat, M. et al. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol. Cell. Biol. 11, 5954–5962 (1991).

    Article  CAS  Google Scholar 

  58. Naldini, L. et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 10, 2867–2878 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the contracts “Programma Nazionale di Ricerca e Formazione sui Farmaci” (Phase 2, Theme 4) and “Programma Nazionale di Ricerca e Formazione in Oncologia” (Theme 16) granted by the Italian Ministry of University and Scientific and Technological Research (MURST). We are grateful to Sergio Dompé and Gaetano Clavenna for continuous support, Livio Trusolino, Enzo Medico, Luigi Naldini, Antonia Follenzi, and Elisa Vigna for helpful discussion, Francesco Galimi and Erika Cottone for pioneer work, and Laura Palmas, Giovanna Petruccelli, and Raffaella Albano for skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Michieli.

Ethics declarations

Competing interests

C.A., R.C., M.G., P.B., F.C., and G.C. are employed by Dompé S.p.A., which is the assignee of European Patent Applications PCT/EP99/00478 (WO99/38967) and PCT/EP99/00502 (WO99/38968), both entitled “Recombinant proteins derived from HGF and MSP”. However, the authors have no financial participation in the company and will not receive patent royalties.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michieli, P., Cavassa, S., Basilico, C. et al. An HGF–MSP chimera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nat Biotechnol 20, 488–495 (2002). https://doi.org/10.1038/nbt0502-488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0502-488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing