Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between undulated and Patch leads to an extreme form of spina bifida in double-mutant mice

Abstract

The aetiology of spina bifida involves genetic and environmental factors, which may be why major genes contributing to pathogenesis have not been identified. Here we report that undulated–Patch double–mutant mice have a phenotype reminiscent of an extreme form of spina bifida occulta in humans. This unexpected phenotype in double–mutant but not single–mutant mice shows that novel congenital anomalies such as spina bifida can result from interaction between products of independently segregating loci. This example of digenic inheritance may explain the often sporadic nature of spina bifida in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Copp, A.J. et al. The embryonic development of mammalian neural tube defects. Prog. Neurobiol. 35, 363–403 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Elwood, J.M., Elwood, J.H. & Little, J. Classification, anatomy and embryology. in Epidemiology and Control of Neural Tube Defects (eds Elwood, J. M., Little, J. & Elwood, J.H.) 10–36 (Oxford University Press, Oxford, 1992).

    Google Scholar 

  3. Essien, F.B., Haviland, M.B. & Naidoff, A.E. Expression of a new mutation (Axd) causing axial defects in mice correlates with maternal phenotype and age. Teratology 42, 183–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Strong, L.C. & Hollander, W.F. Hereditary loop-tail in the house mouse accompanied by imperforate vagina and craniorachischisis when homozygous. J. Hered. 40, 329–334 (1949).

    Article  Google Scholar 

  6. Neumann, P.E. et al. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genet. 6, 357–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Estibeiro, J.P. et al. Interactions between splotch (Sp) and curly tail (ct) mouse mutants in the embryonic development of neural tube defects. Development 119, 113–121 (1993).

    CAS  PubMed  Google Scholar 

  8. Ehlers, K. et al. Valproic acid-induced spina bifida: a mouse model. Teratology 45, 145–154 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Alles, A. & Sulik, K.K. Retinoic acid-induced spina bifida: evidence for a pathogenetic mechanism. Development 108, 73–81 (1990).

    CAS  PubMed  Google Scholar 

  10. Balling, R., Deutsch, U. & Gruss, P. undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax-1. Cell 55, 531–535 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Wallin, J. et al. The role of Pax-1 in axial skeleton development. Development 120, 1109–1121 (1994).

    CAS  PubMed  Google Scholar 

  12. Morrison-Graham, K. et al. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115, 133–142 (1992).

    CAS  PubMed  Google Scholar 

  13. Orr-Urtreger, A. et al. Developmental expression of the alpha receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation. Development 115, 289–303 (1992).

    CAS  PubMed  Google Scholar 

  14. Schatteman, G.C. et al. Regulation and role of PDGF receptor alpha-subunit expression during embryogenesis. Development 115, 123–31 (1992).

    CAS  PubMed  Google Scholar 

  15. Stephenson, D.A. et al. Platelet-derived growth factor receptor alpha-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation. Proc. natn. Acad. Sci. U.S.A. 88, 6–10 (1991).

    Article  CAS  Google Scholar 

  16. Nagel, D.L. et al. Structural analysis of chromosomal rearrangements associated with the developmental mutations Ph, W19h, and Rw on mouse chromosome 5. Proc. natn. Acad. Sci. U.S.A. 91, 7237–7241 (1994).

    Article  Google Scholar 

  17. Brunkow, M.E. et al. A 1.8 Mb YAC contig spanning three members of the receptor tyrosine kinase gene family (Pdgfra, Kit and FIk1) on mouse chromosome 5. Genomics (in the press).

  18. Grüneberg, H. Genetical studies on the skeleton of the mouse. II. Undulated and its ‘modifiers’. J. Genet. 50, 142–173 (1950).

    Article  PubMed  Google Scholar 

  19. Grüneberg, H. Genetical studies on the skeleton of the mouse. XII. The development of undulated. J. Genet. 52, 441–455 (1954).

    Article  Google Scholar 

  20. Koseki, H. et al. A role for Pax- 1 as a mediator of notochordal signals during the course of dorsoventral specification of vertebrae. Development 119, 649–660 (1993).

    CAS  PubMed  Google Scholar 

  21. Chalepakis, G. et al. The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Grüneberg, H. & Truslove, G.M. Two closely linked genes in the mouse. Genet. Res. 1, 69–90 (1960).

    Article  Google Scholar 

  23. Dimmerick, J.E. Developmental Pathology. (J. Wiley, New York, 1992).

  24. Besmer, P. et al. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Devel. Suppl. 1993, 125–137 (1993).

    Google Scholar 

  25. Duttlinger, R. et al. The Wsh and Ph mutations affect the c-kit expression profile: c-kit misexpression in embryogenesis impairs melanogenesis in Wsh and Ph mutant mice. Proc. natn. Acad. Sci. U.S.A. 92, 3754–3758 (1995).

    Article  CAS  Google Scholar 

  26. Marin-Padilla, M. Cephalic axial skeletal and neural dysraphic disorders: embryology and pathology. Can. J. Neurol. Sci. 18, 153–169 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, Y. et al. A role for Quox-8 in the establishment of the dorsoventral pattern during vertebrate development. Proc. natn. Acad. Sci. U.S.A. 89, 10237–10241 (1992).

    Article  CAS  Google Scholar 

  28. Lykken, D.T. Research with twins: the concept of emergenesis. Psychophysiology 19, 361–373 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Li, C.C. A genetical model of emergenesis: in memory of Laurence H. Snyder, 1901–1986. Am. J. hum. Genet. 41, 517–23 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kajiwara, K. et al. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Schork, N.J. et al. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am. J. hum. Genet. 53, 1127–1136 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Knapp, M. et al. Two-locus disease models with two marker loci: the power of affected-sib-pair tests. Am. J. hum. Genet. 55, 1030–1041 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dizier, M.-H. et al. Interactive effect of two candidate genes in a disease: extension of the marker-association-segregation X2 method. Am. J. hum. Genet. 55, 1042–1049, (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helwig, U., Imai, K., Schmahl, W. et al. Interaction between undulated and Patch leads to an extreme form of spina bifida in double-mutant mice. Nat Genet 11, 60–63 (1995). https://doi.org/10.1038/ng0995-60

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0995-60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing