Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice

A Correction to this article was published on 01 August 1997

Abstract

We constructed two megabase-sized YACs containing large contiguous fragments of the human heavy and kappa (κ) light chain immunoglobulin (Ig) loci in nearly germline configuration, including approximately 66 VH and 32 Vκ genes. We introduced these YACs into Ig-inactivated mice and observed human antibody production which closely resembled that seen in humans in all respects, including gene rearrangement, assembly, and repertoire. Diverse Ig gene usage together with somatic hypermutation enables the mice to generate high affinity fully human antibodies to multiple antigens, including human proteins. Our results underscore the importance of the large Ig fragments with multiple V genes for restoration of a normal humoral immune response. These mice are likely to be a valuable tool for the generation of therapeutic antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cook, G.P. & Tomlinson, I.M. The human immunoglobulin VH repertoire. Immunol. Today 16, 237–242 (1995).

    Article  CAS  Google Scholar 

  2. Matsuda, F. & Honjo, T. Organization of the human immunoglobulin heavy chain locus in Advances in Immunology 62, 1–29 (1993).

    Google Scholar 

  3. Cox, J.P.L., Tomlinson, I.M & Winter, G. A directory of human germ-line Vx segments reveals a strong bias in their usage. Eur. J. Immunol. 24, 827–836 (1994).

    Article  CAS  Google Scholar 

  4. Weichhold, G.M., Ohnheiser, R. & Zachau, H.G. The human immunoglobulin κ locus consists of two copies that are organized in opposite polarity. Genomics 16, 503–511 (1993).

    Article  CAS  Google Scholar 

  5. Max, E. Molecular genetics of immunoglobulins in Fundamental Immunology (ed. Paul, WE.) 315–382 (Raven Press, New York, 1993).

    Google Scholar 

  6. Bruggemann, M. et al. Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. Eur. J. Immunol. 21, 1323–1326 (1991).

    Article  CAS  Google Scholar 

  7. Taylor, L.D. et al. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucl. Acids Res. 20, 6287–6295 (1992).

    Article  CAS  Google Scholar 

  8. Green, L.L. et al. .Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genet. 7, 13–21 (1994).

    Article  CAS  Google Scholar 

  9. Wagner, S.D. et al. The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur. J. Immunol. 24, 2672–2681 (1994).

    Article  CAS  Google Scholar 

  10. Jakobovits, A. Humanizing the mouse genome. Curr. Biol. 4, 761–763 (1994).

    Article  CAS  Google Scholar 

  11. Bruggemann, M. & Neuberger, M.S. Strategies for expressing human antibody repertoires in transgenic mice. Immunol. Today 17, 391–397 (1996).

    Article  CAS  Google Scholar 

  12. Lonberg, N. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856–859 (1994).

    Article  CAS  Google Scholar 

  13. Fishwild, D.M. et al. High-avidity human IgG? monoclonal antibodies from a novel strain of minilocus transgenic mice. Nature Biotech. 14, 845–851 (1996).

    Article  CAS  Google Scholar 

  14. Tuaillon, N., Taylor, L.D., Lonberg, N., Tucker, P.W. & Capra, J.D. Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: gene-segment use in m and g transcripts. Proc. Natl. Acad. Sci. USA 90, 3720–3724 (1993).

    Article  CAS  Google Scholar 

  15. Taylor, L.D. et al. Human immunoglobulin transgenes undergo rearrangement, somatic mutation and class switching in mice that lack endogenous IgM. Int. Immun. 6, 579–591 (1994).

    Article  CAS  Google Scholar 

  16. Silverman, G.A. et al. Meiotic recombination between yeast artificial chromosomes yields a single clone containing the entire BCL2 protooncogene. Proc. Natl. Acad. Sci. USA 87, 9913–9917 (1990).

    Article  CAS  Google Scholar 

  17. den Dunnen, J.T. et al. Reconstruction of the 2.4 Mb human DMD-gene by homologous YAC recombination. Hum. Mol. Genet. 1, 19–28 (1992).

    Article  CAS  Google Scholar 

  18. Mendez, M.J. et al. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. Genomics 26, 294–307 (1995).

    Article  CAS  Google Scholar 

  19. Huber, C., Huber, E., Lautner-Rieske, A., Schable, K. F. & Zachau, H.G. The human immunoglobulin κ locus. Characterization of the partially duplicated L regions. Eur. J. Immun. 23, 2860–2967 (1993).

    Article  CAS  Google Scholar 

  20. Jakobovits, A. et al. Germ-line transmission and expression of a human-derived yeast artificial-chromosome. Nature 362, 255–258 (1993).

    Article  CAS  Google Scholar 

  21. Jakobovits, A. et al. Analysis of homozygous mutant chimaeric mice: Deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proc. Natl. Acad. Sci. USA, 90, 2551–2555 (1993).

    Article  CAS  Google Scholar 

  22. Yamada, M. et al. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J. Exp. Med. 173, 395–407 (1991).

    Article  CAS  Google Scholar 

  23. Brezinschek, H.P., Brezinschek, R.I. & Lipsky, P.E. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J. Immun. 155, 190–202 (1995).

    CAS  PubMed  Google Scholar 

  24. Feeney, A.J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172, 137–1390 (1990).

    Article  Google Scholar 

  25. Marks, J.D., Tristem, J., Karpas, A. & Winter, G. Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immun. 21, 985–991 (1991).

    Article  CAS  Google Scholar 

  26. Sato, J.D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

    CAS  PubMed  Google Scholar 

  27. Kawamoto, T. et al. Growth stimulation of A431 cells by epidermal growth factor: Identification of high affinity receptors for EGF by an anti-receptor monoclonal antibody. Proc. Natl. Acad. Sci. USA 80, 1337–1341 (1983).

    Article  CAS  Google Scholar 

  28. Gill, G.N. et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 259, 7755 (1984).

    CAS  PubMed  Google Scholar 

  29. Vaughan, T.J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotech. 14, 309–314 (1996).

    Article  CAS  Google Scholar 

  30. Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).

    Article  CAS  Google Scholar 

  31. Abertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci USA. 87, 4256 (1990).

    Article  Google Scholar 

  32. Berman, J.E. et al. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus. EMBO J. 7, 727–738 (1988).

    Article  CAS  Google Scholar 

  33. Anand, R., Villasante, A. & Tyler-Smith, C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucl. Acids Res. 17, 3425–3433 (1989).

    Article  CAS  Google Scholar 

  34. Sherman, F., Fink, G.R. & Hicks, J.B. Laboratory course manual for methods in yeast genetics. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1986).

  35. Schiestl, R.H. & Gietz, R.D. High efficiency transformation of intact yeast cells using stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989).

    Article  CAS  Google Scholar 

  36. Mendez, M., David, N., Abderrahim, H. & Klapholz, S. A set of YAC targeting vectors for the interconversion of centric and acentric arms Genome Mapping and Sequencing meeting, 163 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

  37. Hermanson, G.G., Hoekstra, M.F., McElligott, D.L. & Evans, G.A. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast. Nucl. Acids Res. 19, 4943–4948 (1991).

    Article  CAS  Google Scholar 

  38. Flanagan, J.G. & Rabbitts, T.H. Arrangement of human immunoglobulin heavy chain constant region genes implies evolutionary duplication of a segment containing γ, ε and α genes. Nature 300, 709–713 (1982).

    Article  CAS  Google Scholar 

  39. Dariavach, P., Williams, G.T., Campbell, K., Pettersson, S. & Neuberger, M.S. The mouse IgH 3′-enhancer. Eur. J. Immun. 21, 1499–1504 (1991).

    Article  CAS  Google Scholar 

  40. Gemmill, R.M. et al. Protocols for pulsed field gel electrophoresis: Separation and detection of large DNA molecules. Adv. Genome Biol. 1, 217–251 (1991).

    Google Scholar 

  41. Ray, S. & Diamond, B. Generation of a fusion partner to sample the repertoire of Splenic B cells destined for apoptosis. Proc. Natl. Acad. Sci. USA 91, 5548–5551 (1994).

    Article  CAS  Google Scholar 

  42. Galfre, G. & Milstein, C. Preparation of monoclonal antibodies: strategies and procedures. Meth. Enzym. 73, 3–46 (1981).

    Article  CAS  Google Scholar 

  43. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W. Unit 2. 1, Enzyme-linked immunosorbent assays in Current Protocols in Immunology (John Wiley and Sons, Inc. New York, 1994 ).

  44. Lusti-Marasimhan, M. et al. Mutation of Leu 25 and Val 27 introduces CC chemokine activity into interleukin-8. J Biol. Chem. 270, 2716–2721 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendez, M., Green, L., Corvalan, J. et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15, 146–156 (1997). https://doi.org/10.1038/ng0297-146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing