Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32)

Abstract

Mucosa-associated lymphoid tissue (MALT) lymphomas most frequently involve the gastrointestinal tract and are the most common subset of extranodal non-Hodgkin lymphoma1 (NHL). Here we describe overexpression of BCL10 , a novel apoptotic signalling gene that encodes an amino-terminal caspase recruitment domain (CARD; ref. 2), in MALT lymphomas due to the recurrent t(1;14)(p22;q32) (ref. 3). BCL10 cDNAs from t(1;14)-positive MALT tumours contained a variety of mutations, most resulting in truncations either in or carboxy terminal to the CARD. Wild-type BCL10 activated NF-κB but induced apoptosis of MCF7 and 293 cells. CARD-truncation mutants were unable to induce cell death or activate NF-κB, whereas mutants with C-terminal truncations retained NF-κB activation but did not induce apoptosis. Mutant BCL10 overexpression might have a twofold lymphomagenic effect: loss of BCL10 pro-apoptosis may confer a survival advantage to MALT B-cells, and constitutive NF-κB activation may provide both anti-apoptotic and proliferative signals mediated via its transcriptional targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic cloning of t(1;14)(p22;q32).
Figure 2: BCL10 expression.
Figure 3: Alignment of BCL10 with EHV-2 E10 (a) and comparison of the BCL10 CARD motif with other apoptotic signalling proteins (b).
Figure 4: Cell death (a) and NF-κB activation (b) assays of wild-type BCL10 and selected mutants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Zucca, E., Roggero, E. & Pileri, S. B-cell lymphoma of MALT type: a review with special emphasis on diagnostic and management problems of low-grade gastric tumours. Br. J. Haematol. 100, 3– 14 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signaling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Wotherspoon, A.C., Pan, L., Diss, T.C. & Isaacson, P.G. Cytogenetic study of B-cell lymphoma of mucosa-associated lymphoid tissue. Cancer Genet. Cytogenet. 58, 35–38 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Offit, K., Jhanwar, S.C., Ladanyi, M., Filippa, D.A. & Chaganti, R.S. Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin's lymphoma: correlations between recurrent aberrations, histology, and exposure to cytotoxic treatment. Genes Chromosomes Cancer 3, 189–201 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Tilly, H. et al. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 84, 1043–1049 (1994).

    CAS  PubMed  Google Scholar 

  6. Schlegelberger, B. et al. Cytogenetic findings and results of combined immunophenotyping and karyotyping in Hodgkin's disease. Leukemia 8, 72–80 (1994).

    CAS  PubMed  Google Scholar 

  7. Telford, E.A.R., Watson, M.S., Aird, H.C., Perry, J. & Davison, A.J. The DNA sequence of equine herpesvirus 2. J. Mol. Biol. 249, 520–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Cesarman, E. & Knowles, D.M. Kaposi's sarcoma-associated herpesvirus: a lymphotropic human herpesvirus associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Semin. Diagn. Pathol. 14, 54–66 (1997).

    CAS  PubMed  Google Scholar 

  9. Chou, J.J., Matsuo, H., Duan, H. & Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94, 171– 180 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, M., Lee, J., Schilbach, S., Goddard, A. & Dixit, V. mE10, a novel CARD-containing proapoptotic molecule. J. Biol. Chem. 274, 10287– 10292 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Yin, C., Knudson, M., Korsmeyer, S.J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  12. Storb, U. Progress in understanding the mechanism and consequences of somatic hypermutation. Immunol. Rev. 162, 5–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Sonenshein, G.E. Rel/NF-κB transcription factors and the control of apoptosis. Semin. Cancer Biol. 8, 113–119 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V. & Baldwin, A.S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Snow, E.C. The role of c-myc during normal B cell proliferation, and as B cells undergo malignant transformation. Curr. Top. Microbiol. Immunol. 224, 211–220 (1997).

    CAS  PubMed  Google Scholar 

  17. Mayo, M.W. et al. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278, 1812–1815 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Besancon, F., Atfi, A., Gespach, C., Cayre, Y.E. & Bourgeade, M.F. Evidence for a role of NF-κB in the survival of hematopoietic cells mediated by interleukin 3 and the oncogenic TEL/platelet-derived growth factor receptor β fusion protein. Proc. Natl Acad. Sci. USA 95, 8081–8086 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reuther, J.Y., Reuther, G.W., Cortez, D., Pendergast, A.M. & Baldwin, A.S. Jr A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev. 12, 968–981 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, H. et al. Role of the Rel-family of transcription factors in the regulation of c-myc gene transcription and apoptosis of WEHI 231 murine B-cells. Curr. Top. Microbiol. Immunol. 194, 247– 255 (1995).

    CAS  PubMed  Google Scholar 

  21. Baeuerle, P.A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13– 20 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Gerondakis, S., Grumont, R., Rourke, I. & Grossmann, M. The regulation and roles of Rel/NF-κB transcription factors during lymphocyte activation. Curr. Opin. Immunol. 10, 353– 359 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Luque, I. & Gelinas, C. Rel/NF-κB and IκB factors in oncogenesis. Semin. Cancer Biol. 8, 103 –111 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Willis, T.G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Willis, T.G. et al. Rapid molecular cloning of rearrangements of the IGHJ l ocus using long-distance inverse polymerase chain reaction. Blood 90, 2456–2464 ( 1997).

    CAS  PubMed  Google Scholar 

  26. Siebert, R. et al. Application of interphase fluorescence in situ hybridization for the detection of the Burkitt translocation t(8;14)(q24;q32) in B-cell lymphomas. Blood 91, 984– 990 (1998).

    CAS  PubMed  Google Scholar 

  27. McCarthy, J.V., Ni, J. & Dixit, V.M. RIP2 is a novel NF-κB-activating and cell death-inducing kinase. J. Biol. Chem. 273, 16968–16975 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Vandiveer, I.S. Herrington and D. Dodson for manuscript preparation; D. Schuster, C. Becher and C. Reinsch for technical assistance; Y. Zhang, I.M. Subero and T. Springer for help with FISH studies; S. Gesk for assistance with analysis of the sequencing data; and J. Cleveland, J. Downing, G. Grosveld, J. Ihle, M. Kastan, A.T. Look and J. van Deursen for their comments regarding the manuscript. This research was supported in part by Cancer Center Support (CORE) Grant CA-27165 from the National Cancer Institute, the American Lebanese Syrian Associated Charities (ALSAC), St. Jude Children's Research Hospital, the Comité du Rhône de la Ligue Contre le Cancer (Lyon France), Deutsche Krebshilfe Grant 10-0992-Schl3, Wilhelm Sander Stiftung Grant 95.003.2 and the Interdisciplinary Center for Clinical Cancer Research, University of Kiel. B.S. holds a Hermann and Lilly Schilling professorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brigitte Schlegelberger or Stephan W. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Siebert, R., Yan, M. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32) . Nat Genet 22, 63–68 (1999). https://doi.org/10.1038/8767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing