Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When calcium goes wrong: genetic alterations of a ubiquitous signaling route

Abstract

In all eukaryotic cells, the cytosolic concentration of calcium ions ([Ca2+]c) is tightly controlled by complex interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions, and disruption of Ca2+ handling leads to cell death. Here we review the human genetic diseases associated with perturbations in the Ca2+ signaling machinery. Despite the importance of Ca2+ in physiology and pathology, the number of known genetic diseases that can be attributed to defects in proteins directly involved in Ca2+ homeostasis is limited to few examples, which will be discussed. This paucity in contrast with the wide molecular repertoire may depend on the extreme severity of the phenotype (leading to death in utero) or, conversely, on functional compensation due to redundancy. In the latter case, it stands to reason that other genetic defects in calcium signaling have yet to be identified owing to their subtle phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of an idealized mammalian cell with the localization of the main players of Ca2+ homeostasis.

Similar content being viewed by others

References

  1. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  2. Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595–636 (1994).

    Article  CAS  Google Scholar 

  3. Clapham, D.E. Sorting out MIC, TRP, and CRAC ion channels. J. Gen. Physiol. 120, 217–220 (2002).

    Article  CAS  Google Scholar 

  4. Pinton, P., Pozzan, T. & Rizzuto, R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308 (1998).

    Article  CAS  Google Scholar 

  5. Schmidt, M. et al. A new phospholipase-C-calcium signaling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3, 1020–1024 (2001).

    Article  CAS  Google Scholar 

  6. Yoo, A.S. et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572 (2000).

    Article  CAS  Google Scholar 

  7. Leissring, M.A. et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798 (2000).

    Article  CAS  Google Scholar 

  8. Pinton, P. et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol. 148, 857–862 (2000).

    Article  CAS  Google Scholar 

  9. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  Google Scholar 

  10. Jouaville, L.S., Pinton, P., Bastianutto, C., Rutter, G.A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 96, 13807–13812 (1999).

    Article  CAS  Google Scholar 

  11. Pinton, P. et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701 (2001).

    Article  CAS  Google Scholar 

  12. Panov, A.V. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736 (2002).

    Article  CAS  Google Scholar 

  13. Brini, M. et al. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat. Med. 5, 951–954 (1999).

    Article  CAS  Google Scholar 

  14. Melzer, W., Herrmann-Frank, A. & Luttgau, H.C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim. Biophys. Acta 1241, 59–116 (1995).

    Article  Google Scholar 

  15. Franzini-Armstrong, C. & Protasi, F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol. Rev. 77, 699–729 (1997).

    Article  CAS  Google Scholar 

  16. MacLennan, D.H. & Phillips, M.S. Malignant hyperthermia. Science 256, 789–794 (1992).

    Article  CAS  Google Scholar 

  17. Zhang, Y. et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat. Genet. 5, 46–50 (1993).

    Article  CAS  Google Scholar 

  18. Quane, K.A. et al. Detection of a novel mutation at amino acid position 614 in the ryanodine receptor in malignant hyperthermia. Br. J. Anaesth. 79, 332–337 (1997).

    Article  CAS  Google Scholar 

  19. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Article  CAS  Google Scholar 

  20. Mickelson, J.R. & Louis, C.F. Malignant hyperthermia: excitation–contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol. Rev. 76, 537–592 (1996).

    Article  CAS  Google Scholar 

  21. Loke, J. & MacLennan, D.H. Malignant hyperthermia and central core disease: disorders of Ca2+ release channels. Am. J. Med. 104, 470–486 (1998).

    Article  CAS  Google Scholar 

  22. Monnier, N., Procaccio, V., Stieglitz, P. & Lunardi, J. Malignant-hyperthermia susceptibility is associated with a mutation of the α1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am. J. Hum. Genet. 60, 1316–1325 (1997).

    Article  CAS  Google Scholar 

  23. Dirksen, R.T. & Avila, G. Altered ryanodine receptor function in central core disease: leaky or uncoupled Ca2+ release channels? Trends Cardiovasc. Med. 12, 189–197 (2002).

    Article  CAS  Google Scholar 

  24. MacLennan, D.H. Ca2+ signaling and muscle disease. Eur. J. Biochem. 267, 5291–5297 (2000).

    Article  CAS  Google Scholar 

  25. Turner, P.R., Westwood, T., Regen, C.M. & Steinhardt, R.A. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335, 735–738 (1988).

    Article  CAS  Google Scholar 

  26. Robert, V. et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J. Biol. Chem. 276, 4647–4651 (2001).

    Article  CAS  Google Scholar 

  27. Lynch, P.J. et al. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc. Natl. Acad. Sci. USA 96, 4164–4169 (1999).

    Article  CAS  Google Scholar 

  28. Avila, G., O'Brien, J.J. & Dirksen, R.T. Excitation–contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proc. Natl. Acad. Sci. USA 98, 4215–4220 (2001).

    Article  CAS  Google Scholar 

  29. Sternberg, D. et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 124, 1091–1099 (2001).

    Article  CAS  Google Scholar 

  30. Dias Da Silva, M.R., Cerutti, J.M., Arnaldi, L.A. & Maciel, R.M. A mutation in the KCNE3 potassium channel gene is associated with susceptibility to thyrotoxic hypokalemic periodic paralysis. J. Clin. Endocrinol. Metab. 87, 4881–4884 (2002).

    Article  Google Scholar 

  31. Rajabally, Y.A. & El Lahawi, M. Hypokalemic periodic paralysis associated with malignant hyperthermia. Muscle Nerve 25, 453–455 (2002).

    Article  Google Scholar 

  32. Brody, I.A. Muscle contracture induced by exercise. A syndrome attributable to decreased relaxing factor. N. Engl. J. Med. 281, 187–192 (1969).

    Article  CAS  Google Scholar 

  33. Karpati, G., Charuk, J., Carpenter, S., Jablecki, C. & Holland, P. Myopathy caused by a deficiency of Ca2+-adenosine triphosphatase in sarcoplasmic reticulum (Brody's disease). Ann. Neurol. 20, 38–49 (1986).

    Article  CAS  Google Scholar 

  34. Odermatt, A. et al. Mutations in the gene encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat. Genet. 14, 191–194 (1996).

    Article  CAS  Google Scholar 

  35. Odermatt, A. et al. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Hum. Genet. 106, 482–491 (2000).

    Article  CAS  Google Scholar 

  36. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    Article  CAS  Google Scholar 

  37. Priori, S.G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    Article  CAS  Google Scholar 

  38. Tiso, N. et al. The binding of the RyR2 calcium channel to its gating protein FKBP12.6 is oppositely affected by ARVD2 and VTSIP mutations. Biochem. Biophys. Res. Commun. 299, 594–598 (2002).

    Article  CAS  Google Scholar 

  39. Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  Google Scholar 

  40. Hatakeyama, S. et al. Differential nociceptive responses in mice lacking the α1B subunit of N-type Ca2+ channels. Neuroreport 12, 2423–2427 (2001).

    Article  CAS  Google Scholar 

  41. Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680 (1995).

    Article  CAS  Google Scholar 

  42. Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).

    Article  CAS  Google Scholar 

  43. Strom, T.M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 260–263 (1998).

    Article  CAS  Google Scholar 

  44. Bech-Hansen, N.T. et al. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 264–267 (1998).

    Article  CAS  Google Scholar 

  45. Pietrobon, D. Calcium channels and channelopathies of the central nervous system. Mol. Neurobiol. 25, 31–50 (2002).

    Article  CAS  Google Scholar 

  46. Boycott, K.M. et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum. Genet. 108, 91–97 (2001).

    Article  CAS  Google Scholar 

  47. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  48. Tottene, A. et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc. Natl. Acad. Sci. USA 99, 13284–13289 (2002).

    Article  CAS  Google Scholar 

  49. Jouvenceau, A. et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358, 801–807 (2001).

    Article  CAS  Google Scholar 

  50. Guida, S. et al. Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am. J. Hum. Genet. 68, 759–764 (2001).

    Article  CAS  Google Scholar 

  51. Wappl, E. et al. Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J. Biol. Chem. 277, 6960–6966 (2002).

    Article  CAS  Google Scholar 

  52. Margolis, R.L. The spinocerebellar ataxias: order emerges from chaos. Curr. Neurol. Neurosci. Rep. 2, 447–456 (2002).

    Article  Google Scholar 

  53. Toru, S. et al. Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J. Biol. Chem. 275, 10893–10898 (2000).

    Article  CAS  Google Scholar 

  54. Piedras-Renteria, E.S. et al. Increased expression of α1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J. Neurosci. 21, 9185–9193 (2001).

    Article  CAS  Google Scholar 

  55. Sakuntabhai, A. et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat. Genet. 21, 271–277 (1999).

    Article  CAS  Google Scholar 

  56. Hu, Z. et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey–Hailey disease. Nat. Genet. 24, 61–65 (2000).

    Article  CAS  Google Scholar 

  57. Sudbrak, R. et al. Hailey–Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum. Mol. Genet. 9, 1131–1140 (2000).

    Article  CAS  Google Scholar 

  58. Periz, G. & Fortini, M.E. Ca2+-ATPase function is required for intracellular trafficking of the Notch receptor in Drosophila. EMBO J. 18, 5983–5993 (1999).

    Article  CAS  Google Scholar 

  59. Egan, M.E. et al. Calcium-pump inhibitors induce functional surface expression of Delta F508-CFTR protein in cystic fibrosis epithelial cells. Nat. Med. 8, 485–492 (2002).

    Article  CAS  Google Scholar 

  60. Mesaeli, N. et al. Calreticulin is essential for cardiac development. J. Cell Biol. 144, 857–868 (1999).

    Article  CAS  Google Scholar 

  61. Graef, I.A., Chen, F., Chen, L., Kuo, A. & Crabtree, G.R. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105, 863–875 (2001).

    Article  CAS  Google Scholar 

  62. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002).

    Article  CAS  Google Scholar 

  63. Walder, R.Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).

    Article  CAS  Google Scholar 

  64. Schlingmann, K.P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).

    Article  CAS  Google Scholar 

  65. Futatsugi, A. et al. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 24, 701–713 (1999).

    Article  CAS  Google Scholar 

  66. Balschun, D. et al. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J. 18, 5264–5273 (1999).

    Article  CAS  Google Scholar 

  67. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  68. Ertel, E.A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Cortopassi and M. Brini for critically reading the manuscript. The original work by the authors has been supported by grants from Italian Telethon, Italian Association for Cancer Research, the Italian Ministry of University, the National Research Council, the Human Frontier Science Program, The Italian Space Agency and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Rizzuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzuto, R., Pozzan, T. When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat Genet 34, 135–141 (2003). https://doi.org/10.1038/ng0603-135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0603-135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing