Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain

Abstract

Plasmids are natural vectors for gene transfer. In Gram-negative bacteria, plasmid DNA replication is triggered when monomers of an initiator protein (Rep) bind to direct repeats at the origin sequence. Rep dimers, which are inactive as initiators, bind to an inverse repeat operator, repressing transcription of the rep gene. Rep proteins are composed of N-terminal dimerization and C-terminal DNA-binding domains. Activation of Rep is coupled to dimer dissociation, converting the dimerization domain into a second origin-binding module. Although the structure of the monomeric F plasmid initiator (mRepE) has been determined, the molecular nature of Rep activation remains unknown. Here we report the crystal structure of the dimeric N-terminal domain of the pPS10 plasmid initiator (dRepA). dRepA has a winged-helix fold, as does its homologous domain in mRepE. However, dimerization transforms an interdomain loop and β-strand (monomeric RepE) into an α-helix (dimeric RepA). dRepA resemble the C terminus of eukaryotic and archaeal Cdc6, giving clues to the phylogeny of DNA replication initiators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall architecture of dRepA.
Figure 2: Stereo view of the details of dRepA structure.
Figure 3: Comparison of dRepA and mRepE reveals structural differences linked to Rep activation.
Figure 4: A schematic diagram of the conformational activation of Rep proteins.
Figure 5: Eukaryotic/archaeal replication initiator mCdc6 is structurally related to bacterial dRepA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. del Solar, G., Giraldo, R., Ruíz-Echevarría, M.J., Espinosa, M. & Díaz, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Giraldo, R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol. Rev. 26, 533–554 (2003).

    Article  CAS  Google Scholar 

  3. Manen, D., Upegui, G.L. & Caro, L. Monomers and dimers of the RepA protein in plasmid pSC101 replication: domains in RepA. Proc. Natl. Acad. Sci. USA 89, 8923–8927 (1992).

    Article  CAS  Google Scholar 

  4. Ishiai, M., Wada, C., Kawasaki, Y. & Yura, T. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc. Natl. Acad. Sci. USA 91, 3839–3843 (1994).

    Article  CAS  Google Scholar 

  5. García de Viedma, D., Giraldo, R., Ruíz-Echevarría, M.J., Lurz, R. & Díaz-Orejas, R. Transcription of repA, the gene of the initiation protein of the Pseudomonas plasmid pPS10, is autoregulated by sequential interactions of the RepA protein at a symmetrical operator. J. Mol. Biol. 247, 211–223 (1995).

    Article  Google Scholar 

  6. Wickner, S., Skowyra, D., Hoskins, J. & McKenney, K. DnaJ, DnaK, and GrpE heat shock proteins are required in oriP1 DNA replication solely at the RepA monomerization step. Proc. Natl. Acad. Sci. USA 89, 10345–10349 (1992).

    Article  CAS  Google Scholar 

  7. Sozhamannan, S. & Chattoraj, D.K. Heat shock proteins DnaJ, DnaK and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. J. Bacteriol. 175, 3546–3555 (1993).

    Article  CAS  Google Scholar 

  8. DasGupta, S., Mukhopadhyay, G., Papp, P.P., Lewis, M.S. & Chattoraj, D.K. Activation of DNA binding by the monomeric form of the P1 replication initiator RepA by heat shock proteins DnaJ and DnaK. J. Mol. Biol. 232, 23–34 (1993).

    Article  CAS  Google Scholar 

  9. Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 91, 12218–12222 (1994).

    Article  CAS  Google Scholar 

  10. Dibbens, J.A., Muraiso, K. & Chattoraj, D.K. Chaperone-mediated reduction of RepA dimerization is associated with RepA conformational change. Mol. Microbiol. 26, 185–195 (1997).

    Article  CAS  Google Scholar 

  11. Konieczny, I. & Helinski, D.R. The replication initiator protein of the broad-host-range plasmid RK2 is activated by the ClpX chaperone. Proc. Natl. Acad. Sci. USA 94, 14378–14382 (1997).

    Article  CAS  Google Scholar 

  12. Díaz-López, T. et al. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J. Biol. Chem. 278, 18606–18616 (2003).

    Article  Google Scholar 

  13. García de Viedma, D., Giraldo, R., Rivas, G., Fernández-Tresguerres, E. & Díaz-Orejas, R. A leucine-zipper motif determines different functions in a DNA replication protein. EMBO J. 15, 925–934 (1996).

    Article  Google Scholar 

  14. Giraldo, R., Andreu, J.M. & Díaz-Orejas, R. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO J. 17, 4511–4526 (1998).

    Article  CAS  Google Scholar 

  15. Nieto, C., Giraldo, R., Fernández-Tresguerres, E. & Díaz, R. Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific of Pseudomonas isolated from Pseudomonas syringae pv. savastanoi. J. Mol. Biol. 223, 415–426 (1992).

    Article  CAS  Google Scholar 

  16. Komori, H. et al. Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. EMBO J. 18, 4597–4607 (1999).

    Article  CAS  Google Scholar 

  17. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Op. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  18. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  19. Giraldo, R., Nieto, C., Fernández-Tresguerres, M.E. & Díaz, R. Bacterial zipper. Nature 342, 866 (1989).

    Article  CAS  Google Scholar 

  20. García de Viedma, D., Serrano-López, A. & Díaz-Orejas, R. Specific binding of the replication protein of plasmid pPS10 to direct and inverted repeats is mediated by an HTH motif. Nucleic Acids Res. 23, 5048–5054 (1995).

    Article  Google Scholar 

  21. Liu, J. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell 6, 637–648 (2000).

    Article  CAS  Google Scholar 

  22. Giraldo, R. & Díaz-Orejas, R. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p). Proc. Natl. Acad. Sci. USA 98, 4938–4943 (2001).

    Article  CAS  Google Scholar 

  23. Maestro, B., Sanz, J.M., Díaz-Orejas, R. & Fernández-Tresguerres, E. Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J. Bacteriol. 185, 1367–1375 (2003).

    Article  CAS  Google Scholar 

  24. Matsunaga, F. et al. The central region of RepE initiator protein of mini-F plasmid plays a crucial role in dimerization required for negative replication control. J. Mol. Biol. 274, 27–38 (1997).

    Article  CAS  Google Scholar 

  25. Xia, G., Manen, D., Yu, Y. & Caro, L. In vivo and in vitro studies of a copy number mutation of the RepA replication protein of plasmid pSC101. J. Bacteriol. 175, 4165–4175 (1993).

    Article  CAS  Google Scholar 

  26. Miron, A., Patel, I. & Bastia, D. Multiple pathways of copy control of γ replicon of R6K: mechanisms both dependent on and independent of cooperativity of interaction of π protein with DNA affect the copy number. Proc. Natl. Acad. Sci. USA 91, 6438–6442 (1994).

    Article  CAS  Google Scholar 

  27. Chattoraj, D.K. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol. Microbiol. 37, 467–476 (2000).

    Article  CAS  Google Scholar 

  28. Blasina, A., Kittell, B.L., Toukdarian, A.E. & Helinski, D.R. Copy-up mutants of the plasmid RK2 replication initiation protein are defective in coupling RK2 replication origins. Proc. Natl. Acad. Sci. USA 93, 3559–3564 (1996).

    Article  CAS  Google Scholar 

  29. Urh, M. et al. Assemblies of replication initiation protein on symmetric and asymmetric DNA sequences depend on multiple protein oligomerization surfaces. J. Mol. Biol. 283, 619–631 (1998).

    Article  CAS  Google Scholar 

  30. Uga, H., Matsunaga, F. & Wada, C. Regulation of DNA replication by iterons: an interaction between the ori2 and incC regions mediated by RepE-bound iterons inhibits DNA replication of mini-F plasmid in Escherichia coli. EMBO J. 18, 3856–3867 (1999).

    Article  CAS  Google Scholar 

  31. Park, K., Han, E., Paulsson, J. & Chattoraj, D.K. Origin pairing ('handcuffing') as a mode of negative control of P1 plasmid copy number. EMBO J. 20, 7323–7332 (2001).

    Article  CAS  Google Scholar 

  32. Spolar, R.S. & Record, T.M. Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  33. Jen-Jacobson, L., Engler, L.E. & Jacobson, L.A. Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure 8, 1015–1023 (2000).

    Article  CAS  Google Scholar 

  34. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26 (1992).

  35. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  36. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  37. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  38. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  40. Laskowski, R.A, MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Kraulis, P.J. MOLSCRIPT—a program to produce both detailed and schematic plots of protein structures. Appl. Crystallogr. 24, 946–950 (1996).

    Article  Google Scholar 

  42. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  43. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamline X31 in EMBL-DESY for help with data collection. We are indebted to D. Rhodes for the critical reading of the manuscript and, together with V. Ramakrishnan, for encouragement. This work has been financed with grants of Spanish MCyT, CAM and a FIS network for research on infectious pathology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Giraldo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldo, R., Fernández-Tornero, C., Evans, P. et al. A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nat Struct Mol Biol 10, 565–571 (2003). https://doi.org/10.1038/nsb937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing