Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope

Abstract

A viral inner nuclear membrane–sorting motif sequence (INM-SM) was used to identify proteins that recognize integral membrane proteins destined for the INM. Herein we describe importin-α-16, a membrane-associated isoform of Spodoptera frugiperda importin-α that contains the C-terminal amino acid residues comprising armadillo helical-repeat domains 7–10. In the endoplasmic reticulum (ER) membrane, importin-α-16 is adjacent to the translocon protein Sec61α. Importin-α-16 cross-links to the INM-SM sequence as it emerges from the ribosomal tunnel and remains adjacent to the INM-SM after INM-SM integration into the ER membrane and release from the translocon. Cross-linking results suggest that importin-α-16 discriminates between INM- and non–INM-directed proteins. Thus, it seems that during and after cotranslational membrane integration, importin-α-16 is involved in the trafficking of integral membrane proteins to the INM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SMC cross-links to two cellular proteins, p10 and p25.
Figure 2: E26 shares epitopes with p10.
Figure 3: C2301–454 cross-links with the SMC.
Figure 4: C2301–454 is a translocon-associated protein that has substrate specificity for SMC.
Figure 5: Primer-extension analysis.
Figure 6: C2 encodes Sf9 importin-α.
Figure 7: Model of importin-α-16 involvement in membrane protein trafficking to the INM.

Similar content being viewed by others

References

  1. Hetzer, M., Walther, T.C. & Mattaj, I.W. Pushing the envelope: structure, function and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol. 21, 347–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Saksena, S., Shao, Y., Braunagel, S.C., Summers, M.D. & Johnson, A.E. Cotranslational integration and initial sorting at the endoplasmic reticulum translocon of protein destined for the inner nuclear membrane. Proc. Natl Acad. Sci. USA 101, 12537–12542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braunagel, S.C. et al. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins: facilitated trafficking to the inner nuclear membrane. Proc. Natl Acad. Sci. USA 101, 8372–8377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohba, T., Schirmer, E.C., Nishimoto, T. & Gerace, L. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol. 167, 1051–1062 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hong, T., Summers, M.D. & Braunagel, S.C. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of the occlusion-derived virus. Proc. Natl Acad. Sci. USA 94, 4050–4055 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosas-Acosta, G., Braunagel, S.C. & Summers, M.D. Effects of deletion and overexpression of the Autographa californica nuclear polyhedrosis virus FP25K gene on synthesis of two occlusion-derived virus envelope proteins and their transport into virus-induced intranuclear membranes. J. Virol. 75, 10829–10842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, J.M. et al. Molecular cloning and characterization of the translationally controlled tumor protein gene in Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 35–43 (2004).

    Article  PubMed  Google Scholar 

  10. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T. & Adam, S.A. Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol. 14, 505–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Miyamoto, Y. et al. Importin α can migrate into the nucleus in an importin β- and Ran-independent manner. EMBO J. 21, 5833–5842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Jakel, S., Mingot, J.-M., Schwarzmaier, P., Hartmann, E. & Görlich, D. Importins fulfill a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21, 377–386 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Harel, A. & Forbes, D.J. Importin beta: conducting a much larger cellular symphony. Mol. Cell 16, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  17. Kotera, I. et al. Importin α transports CaMKIV to the nucleus without utilizing importin β. EMBO J. 24, 942–951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kamata, M., Nitahara-Kasahara, Y., Miyamoto, Y., Yoneda, Y. & Aida, Y. Importin-α promotes passage through the nuclear pore complex of human immunodeficiency virus Type 1 Vpr. J. Virol. 79, 3557–3564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pemberton, L.F., Rosenblum, J.S. & Blobel, G. Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J. Cell Biol. 145, 1407–1417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belanger, K.D., Kenna, M.A., Wei, S. & Davis, L.I. Genetic and physical interactions between Srp1p and nuclear pore complex proteins Nup1p and Nup2p. J. Cell Biol. 126, 619–630 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin α. Mol. Cell. Biol. 20, 8468–8479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moroianu, J., Blobel, G. & Radu, A. RanGTP-mediated nuclear export of karyopherin α involves its interaction with the nucleoporin Nup153. Proc. Natl Acad. Sci. USA 94, 9699–9704 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindsay, M.E., Plafker, K., Smith, A.E., Clurman, B.E. & Macara, I.G. Npap60/Nup50 is a tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell 110, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Moore, M.S. Npap60: a new player in nuclear protein import. Trends Cell Biol. 13, 61–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanz, S. & Fainzilber, M. Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics. Neuroscientist 10, 404–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hanz, S. et al. Axoplasmic importins enable retrograde inujry signaling in lesioned nerve. Neuron 40, 1095–1104 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Blesch, A. & Tuszynski, M.H. Nucleus hears axon's pain. Nat. Med. 10, 236–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hachet, V., Köcher, T., Wilm, T. & Mattaj, I.W. Importin α associates with membranes and participates in nuclear envelope assembly in vitro. EMBO J. 23, 1526–1535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marzalek, J.R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian receptors. Cell 102, 175–187 (2000).

    Article  Google Scholar 

  31. Williams, D.S. Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vision Res. 42, 455–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Schatz, C.A. et al. Importin α-regulated nucleation of microtubules by TPX2. EMBO J. 22, 2060–2070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gruss, O.J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Beniya, H., Braunagel, S.C. & Summers, M.D. Autographa californica nuclear polyhedrosis virus: subcellular localization and protein trafficking of BV/ODV-E26 to intranuclear membranes and viral envelopes. Virology 240, 64–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Worman, H.J. & Courvalin, J.-C. Nuclear envelope, nuclear lamina, and inherited disease. Int. Rev. Cytol. 246, 231–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Braunagel, S.C., Elton, D.M., Ma, H. & Summers, M.D. Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope, ODV-E56. Virology 217, 97–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989).

Download references

Acknowledgements

We thank C. Gross, Vertex Pharmaceuticals, for the Sf9 cDNA expression library and Y. Miao and Y. Shao for excellent technical assistance. J. Sacchettini and C. Savva were especially helpful in our efforts to model C2 and provide convincing evidence that C2 is a member of the importin-α family of proteins. BLAST computation was performed at the Swiss Institute of Bioinformatics using the BLAST network service. This article was submitted by S.S. in partial fulfillment of the Ph.D. degree at Texas A&M University. This work was supported by US National Institutes of Health RO1 grant GM26494 (to A.E.J.), the Robert A. Welch Foundation (to A.E.J.) and Texas Agricultural Experiment Station Project grant TEXO-08078 (to M.D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon C Braunagel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Annotated sequence of C2 (PDF 110 kb)

Supplementary Fig. 2

C2301–454 cross-links with the SMC (PDF 998 kb)

Supplementary Fig. 3

Comparison of the sequence of the viral protein E26 with cellular importin-α proteins (PDF 99 kb)

Supplementary Discussion (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saksena, S., Summers, M., Burks, J. et al. Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope. Nat Struct Mol Biol 13, 500–508 (2006). https://doi.org/10.1038/nsmb1098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing