Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous reverse movement of mRNA-bound tRNA through the ribosome

Abstract

During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA–mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA–mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of the post-translocation complex.
Figure 2: Retrotranslocation of fMetVal-tRNAVal.
Figure 3: Requirements of retrotranslocation with respect to E-site tRNA.
Figure 4: Retrotranslocation of fMetPhe-tRNAPhe.
Figure 5: Three-dimensional cryo-EM reconstructions of tRNA-ribosome complexes before and after retrotranslocation.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  Google Scholar 

  2. Gavrilova, L.P. & Spirin, A.S. “Nonenzymatic” translation. Methods Enzymol. 30, 452–462 (1974).

    Article  CAS  Google Scholar 

  3. Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevitch, N.M. & Spirin, A.S. Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101, 537–552 (1976).

    Article  CAS  Google Scholar 

  4. Southworth, D.R., Brunelle, J.L. & Green, R. EF-G-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with thiol-specific reagents. J. Mol. Biol. 324, 611–623 (2002).

    Article  CAS  Google Scholar 

  5. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  Google Scholar 

  6. Semenkov, Y.P., Shapkina, T.G. & Kirillov, S.V. Puromycin reaction of the A-site bound peptidyl-tRNA. Biochimie 74, 411–417 (1992).

    Article  CAS  Google Scholar 

  7. Semenkov, Y., Shapkina, T., Makhno, V. & Kirillov, S. Puromycin reaction for the A site-bound peptidyl-tRNA. FEBS Lett. 296, 207–210 (1992).

    Article  CAS  Google Scholar 

  8. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  9. Sharma, D., Southworth, D.R. & Green, R. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10, 102–113 (2004).

    Article  CAS  Google Scholar 

  10. Hansen, J.L., Schmeing, T.M., Moore, P.B. & Steitz, T.A. Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11670–11675 (2002).

    Article  CAS  Google Scholar 

  11. Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M. & Green, R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol. Cell 12, 321–328 (2003).

    Article  CAS  Google Scholar 

  12. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  13. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  14. Spirin, A.S. Ribosomal translocation: facts and models. Prog. Nucleic Acid Res. Mol. Biol. 32, 75–114 (1985).

    Article  CAS  Google Scholar 

  15. Kirillov, S.V. & Semenkov Yu, P. Non-exclusion principle of Ac-Phe-tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes. FEBS Lett. 148, 235–238 (1982).

    Article  CAS  Google Scholar 

  16. Lill, R., Robertson, J.M. & Wintermeyer, W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry 25, 3245–3255 (1986).

    Article  CAS  Google Scholar 

  17. Lill, R. & Wintermeyer, W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J. Mol. Biol. 196, 137–148 (1987).

    Article  CAS  Google Scholar 

  18. Kirillov, S.V. & Semenkov Yu, P. Extension of Watson's model for the elongation cycle of protein biosynthesis. J. Biomol. Struct. Dyn. 4, 263–269 (1986).

    Article  CAS  Google Scholar 

  19. Kirillov, S.V., Makarov, E.M. & Semenkov Yu, P. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 157, 91–94 (1983).

    Article  CAS  Google Scholar 

  20. Schilling-Bartetzko, S., Franceschi, F., Sternbach, H. & Nierhaus, K.H. Apparent association constants of tRNAs for the ribosomal A, P, and E sites. J. Biol. Chem. 267, 4693–4702 (1992).

    CAS  PubMed  Google Scholar 

  21. Fahlman, R.P., Dale, T. & Uhlenbeck, O.C. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol. Cell 16, 799–805 (2004).

    Article  CAS  Google Scholar 

  22. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 12183–12188 (1996).

    Article  CAS  Google Scholar 

  23. Rheinberger, H.J. & Nierhaus, K.H. The ribosomal E site at low Mg2+: coordinate inactivation of ribosomal functions at Mg2+ concentrations below 10 mM and its prevention by polyamines. J. Biomol. Struct. Dyn. 5, 435–446 (1987).

    Article  CAS  Google Scholar 

  24. Konevega, A.L. et al. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 10, 90–101 (2004).

    Article  CAS  Google Scholar 

  25. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  26. Gold, L. Post-transcriptional regulatory mechanisms in E. coli. Annu. Rev. Biochem. 57, 199–233 (1988).

    Article  CAS  Google Scholar 

  27. Jerinic, O. & Joseph, S. Conformational changes in the ribosome induced by translational miscoding agents. J. Mol. Biol. 304, 707–713 (2000).

    Article  CAS  Google Scholar 

  28. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  29. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  30. Rheinberger, H.J. & Nierhaus, K.H. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett. 204, 97–99 (1986).

    Article  CAS  Google Scholar 

  31. Lill, R. et al. Specific recognition of the 3′-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes. J. Mol. Biol. 203, 699–705 (1988).

    Article  CAS  Google Scholar 

  32. Gabashvili, I.S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).

    Article  CAS  Google Scholar 

  33. Berk, V., Zhang, W., Pai, R.D. & Doudna Cate, J.H. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl. Acad. Sci. USA 103, 15830–15834 (2006).

    Article  CAS  Google Scholar 

  34. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  Google Scholar 

  35. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

    Article  CAS  Google Scholar 

  36. Gao, H., Valle, M., Ehrenberg, M. & Frank, J. Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset. J. Struct. Biol. 147, 283–290 (2004).

    Article  CAS  Google Scholar 

  37. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  38. Shoji, S., Walker, S.E. & Fredrick, K. Reverse translocation of tRNA in the ribosome. Mol. Cell 24, 931–942 (2006).

    Article  CAS  Google Scholar 

  39. Agrawal, R.K. et al. Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopy. J. Biol. Chem. 274, 8723–8729 (1999).

    Article  CAS  Google Scholar 

  40. Robertson, J.M. & Wintermeyer, W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J. Mol. Biol. 196, 525–540 (1987).

    Article  CAS  Google Scholar 

  41. Qin, Y. et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127, 721–733 (2006).

    Article  CAS  Google Scholar 

  42. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).

    Article  CAS  Google Scholar 

  43. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosme during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  44. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  45. Savelsbergh, A., Matassova, N.B., Rodnina, M.V. & Wintermeyer, W. Role of domains 4 and 5 in elongation factor G functions on the ribosome. J. Mol. Biol. 300, 951–961 (2000).

    Article  CAS  Google Scholar 

  46. Mohr, D., Wintermeyer, W. & Rodnina, M.V. Arginines 29 and 59 of elongation factor G are important for GTP hydrolysis or translocation on the ribosome. EMBO J. 19, 3458–3464 (2000).

    Article  CAS  Google Scholar 

  47. Wilson, K.S. & Noller, H.F. Mapping the position of translational elongation factor EF- G in the ribosome by directed hydroxyl radical probing. Cell 92, 131–139 (1998).

    Article  CAS  Google Scholar 

  48. Agrawal, R.K., Penczek, P., Grassucci, R.A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: The mechanism of translocation. Proc. Natl. Acad. Sci. USA 95, 6134–6138 (1998).

    Article  CAS  Google Scholar 

  49. Stark, H., Rodnina, M.V., Wieden, H.-J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000).

    Article  CAS  Google Scholar 

  50. Pestova, T.V., Hellen, C.U. & Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16, 6859–6869 (1996).

    Article  CAS  Google Scholar 

  51. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  52. Sander, B., Golas, M.M. & Stark, H. Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy. J. Struct. Biol. 151, 92–105 (2005).

    Article  CAS  Google Scholar 

  53. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  54. Sander, B., Golas, M.M. & Stark, H. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. J. Struct. Biol. 142, 392–401 (2003).

    Article  CAS  Google Scholar 

  55. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  56. Sander, B., Golas, M.M. & Stark, H. Corrim-based alignment for improved speed in single-particle image processing. J. Struct. Biol. 143, 219–228 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Pestova (SUNY) and A. Kubarenko for help with the toeprinting analysis and C. Schillings, A. Böhm, S. Möbitz, P. Striebeck, W. Jahn and S. Kraffzig for expert technical assistance. Work in our laboratories is supported by the Deutsche Forschungsgemeinschaft (M.V.R. and W.W.), the Fonds der Chemischen Industrie (M.V.R. and W.W.), the Alfried Krupp von Bohlen und Halbach-Stiftung (M.V.R. and W.W.), the Federal Ministry of Education and Research (BMBF), Germany (H.S.), the Russian Foundation for Basic Research (Y.P.S.) and the International Bureau of the BMBF (W.W. and Y.P.S.). N.F. is supported by a Boehringer-Ingelheim fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.V.R., Y.P.S., W.W. and H.S. designed experiments, A.L.K. and Y.P.S. performed biochemical experiments, N.F. performed the cryo-EM analysis, M.V.R. and W.W. wrote the manuscript draft and all authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Wolfgang Wintermeyer or Marina V Rodnina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konevega, A., Fischer, N., Semenkov, Y. et al. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat Struct Mol Biol 14, 318–324 (2007). https://doi.org/10.1038/nsmb1221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing