Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MRE11–RAD50–NBS1 and ATM function as co-mediators of TRF1 in telomere length control

Abstract

Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusion proteins interact with endogenous MRE11 at telomeres.
Figure 2: The wild-type fusion protein promotes telomere elongation by downregulating TRF1 association with telomeric DNA.
Figure 3: Loss of NBS1 promotes TRF1 binding to telomeres.
Figure 4: ATM inhibition upregulates TRF1 binding to telomeres, leading to telomere shortening.
Figure 5: Control of TRF1 binding to telomeres by ATM requires MRE11 and NBS1.
Figure 6: Phosphorylation by ATM impairs TRF1 interaction with telomeric DNA.
Figure 7: Analysis of the role of SQ sites in TRF1 binding to telomeric DNA.
Figure 8: Model for MRN- and ATM-mediated control of TRF1 in modulating telomerase-dependent telomere synthesis.

Similar content being viewed by others

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  2. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  3. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  Google Scholar 

  4. Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474–3487 (2002).

    Article  CAS  Google Scholar 

  5. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  Google Scholar 

  6. Cooper, J.P., Nimmo, E.R., Allshire, R.C. & Cech, T.R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  Google Scholar 

  7. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    Article  CAS  Google Scholar 

  8. Verdun, R.E., Crabbe, L., Haggblom, C. & Karlseder, J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561 (2005).

    Article  CAS  Google Scholar 

  9. Verdun, R.E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  Google Scholar 

  10. Zhu, X.D., Kuster, B., Mann, M., Petrini, J.H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25, 347–352 (2000).

    Article  CAS  Google Scholar 

  11. Xiao, Y. & Weaver, D.T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985–2991 (1997).

    Article  CAS  Google Scholar 

  12. Luo, G. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl. Acad. Sci. USA 96, 7376–7381 (1999).

    Article  CAS  Google Scholar 

  13. Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig, A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11, 105–109 (2001).

    Article  CAS  Google Scholar 

  14. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  Google Scholar 

  15. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  Google Scholar 

  16. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  Google Scholar 

  17. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  Google Scholar 

  18. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  19. Haber, J.E. The many interfaces of Mre11. Cell 95, 583–586 (1998).

    Article  CAS  Google Scholar 

  20. de Lange, T. & Petrini, J. A new connection at human telomeres: association of the Mre11 complex with TRF2. Cold Spring Harb. Symp. Quant. Biol. 65, 265–273 (2000).

    Article  CAS  Google Scholar 

  21. Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  Google Scholar 

  22. Tsukamoto, Y., Taggart, A.K. & Zakian, V.A. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328–1335 (2001).

    Article  CAS  Google Scholar 

  23. Ritchie, K.B. & Petes, T.D. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155, 475–479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Metcalfe, J.A. et al. Accelerated telomere shortening in ataxia telangiectasia. Nat. Genet. 13, 350–353 (1996).

    Article  CAS  Google Scholar 

  25. Ranganathan, V. et al. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr. Biol. 11, 962–966 (2001).

    Article  CAS  Google Scholar 

  26. Kishi, S. et al. Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J. Biol. Chem. 276, 29282–29291 (2001).

    Article  CAS  Google Scholar 

  27. Wu, G., Lee, W.H. & Chen, P.L. NBS1 and TRF1 colocalize at PML bodies during late S/G2 phases in immortalized telomerase-negative cells: implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275, 30618–30622 (2000).

    Article  CAS  Google Scholar 

  28. Kishi, S. & Lu, K.P. A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G2/M checkpoint defect of ataxia-telangiectasia cells. J. Biol. Chem. 277, 7420–7429 (2002).

    Article  CAS  Google Scholar 

  29. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  Google Scholar 

  30. Evans, S.K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999).

    Article  CAS  Google Scholar 

  31. Hopfner, K.P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    Article  CAS  Google Scholar 

  32. Paull, T.T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

    Article  CAS  Google Scholar 

  33. Moncalian, G. et al. The rad50 signature motif: essential to ATP binding and biological function. J. Mol. Biol. 335, 937–951 (2004).

    Article  CAS  Google Scholar 

  34. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436 (1990).

    Article  CAS  Google Scholar 

  35. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  36. Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668 (2000).

    Article  CAS  Google Scholar 

  37. Kraakman-van der Zwet, M. et al. Immortalization and characterization of Nijmegen Breakage syndrome fibroblasts. Mutat. Res. 434, 17–27 (1999).

    Article  CAS  Google Scholar 

  38. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  39. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  Google Scholar 

  40. Bianchi, A., Smith, S., Chong, L., Elias, P. & de Lange, T. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16, 1785–1794 (1997).

    Article  CAS  Google Scholar 

  41. Ziv, Y. et al. Cellular and molecular characteristics of an immortalized ataxia-telangiectasia (group AB) cell line. Cancer Res. 49, 2495–2501 (1989).

    CAS  PubMed  Google Scholar 

  42. Chai, W., Sfeir, A.J., Hoshiyama, H., Shay, J.W. & Wright, W.E. The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep. 7, 225–230 (2006).

    Article  Google Scholar 

  43. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  Google Scholar 

  44. Falck, J., Coates, J. & Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  Google Scholar 

  45. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  Google Scholar 

  46. Robison, J.G., Elliott, J., Dixon, K. & Oakley, G.G. Replication protein A and the Mre11·Rad50·Nbs1 complex co-localize and interact at sites of stalled replication forks. J. Biol. Chem. 279, 34802–34810 (2004).

    Article  CAS  Google Scholar 

  47. Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25, 1764–1774 (2006).

    Article  CAS  Google Scholar 

  48. Masutomi, K. et al. Telomerase maintains telomere structure in normal human cells. Cell 114, 241–253 (2003).

    Article  CAS  Google Scholar 

  49. Chamankhah, M. & Xiao, W. Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27, 2072–2079 (1999).

    Article  CAS  Google Scholar 

  50. Kironmai, K.M. & Muniyappa, K. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2, 443–455 (1997).

    Article  CAS  Google Scholar 

  51. Ritchie, K.B., Mallory, J.C. & Petes, T.D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065–6075 (1999).

    Article  CAS  Google Scholar 

  52. Ray, A. & Runge, K.W. Varying the number of telomere-bound proteins does not alter telomere length in tel1Δ cells. Proc. Natl. Acad. Sci. USA 96, 15044–15049 (1999).

    Article  CAS  Google Scholar 

  53. Craven, R.J. & Petes, T.D. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. Genetics 152, 1531–1541 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson, S., Warr, N., Taylor, D.L. & Watts, F.Z. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Nucleic Acids Res. 27, 2655–2661 (1999).

    Article  CAS  Google Scholar 

  55. Ueno, M. et al. Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol. Cell. Biol. 23, 6553–6563 (2003).

    Article  CAS  Google Scholar 

  56. Hartsuiker, E., Vaessen, E., Carr, A.M. & Kohli, J. Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J. 20, 6660–6671 (2001).

    Article  CAS  Google Scholar 

  57. Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210–221 (2001).

    Article  CAS  Google Scholar 

  58. Nakamura, T.M., Moser, B.A. & Russell, P. Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics 161, 1437–1452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, R.C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  Google Scholar 

  60. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. de Lange (Rockefeller University) for providing crucial reagents, including wild-type RAP1, plasmids pLPC-Myc-RAD50, pcDNA3-Myc-TRF1 and pTH12, antibodies to RAD50, MRE11, NBS1, RAP1, TRF2 and TRF1, cell lines AT22IJE-T and NBS-ILB1 stably expressing pBabe-puro or pBabe-puro-NBS1, and baculovirus-derived recombinant TRF1. We also thank J. Petrini (Sloan-Kettering Institute) for wild-type RAD50 complementary DNA and the cell line ATLD2, and J.R. Walker and members of the Zhu laboratory for critical comments. X.-D.Z. is a Canadian Institutes of Health Research New Investigator, and this work was supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and S.X. performed the experiments. X.-D.Z. conceived and analyzed the experiments and wrote the paper.

Corresponding author

Correspondence to Xu-Dong Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Xiao, S. & Zhu, XD. MRE11–RAD50–NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 14, 832–840 (2007). https://doi.org/10.1038/nsmb1286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing