Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural dynamics in the gating ring of cyclic nucleotide–gated ion channels

Abstract

For ligand-gated ion channels, the binding of a ligand to an intracellular or extracellular domain generates changes in transmembrane pore-forming helices, which alters ion flow. The molecular mechanism for this allostery, however, remains unknown. Here we explore the structure and conformational rearrangements of the C-terminal gating ring of the cyclic nucleotide–gated channel CNGA1 during activation by cyclic nucleotides with patch-clamp fluorometry. By monitoring fluorescent resonance energy transfer (FRET) between membrane-resident quenchers and fluorophores attached to the channel, we detected no movement orthogonal to the membrane during channel activation. By monitoring FRET between fluorophores within the C-terminal region, we determined that the C-terminal end of the C-linker and the end of the C-helix move apart when channels open. We conclude that during channel activation, a portion of the gating ring moves parallel to the plasma membrane, hinging toward the central axis of the channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray crystal structure of HCN2 cytoplasmic domain.
Figure 2: FRET between fluorescently labeled ion channels and the membrane probe, DPA, measured with patch-clamp fluorometry.
Figure 3: FRET between fluorescent channels and the membrane probe, DPA, is sensitive to movement.
Figure 4: FRET between the channel and DPA does not change during ligand activation.
Figure 5: Two-color labeling of channels with GFP and Alexa 568.
Figure 6: The C-helix and residue Cys481 separate during ligand activation.
Figure 7: FRET measurements between GFP and residues throughout the C-terminal region of CNGA1.

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  2. Schreiber, M., Yuan, A. & Salkoff, L. Transplantable sites confer calcium sensitivity to BK channels. Nat. Neurosci. 2, 416–421 (1999).

    Article  CAS  Google Scholar 

  3. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  Google Scholar 

  4. Craven, K.B. & Zagotta, W.N. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68, 375–401 (2006).

    Article  CAS  Google Scholar 

  5. Zagotta, W.N. et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205 (2003).

    Article  CAS  Google Scholar 

  6. Selvin, P.R. Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995).

    Article  CAS  Google Scholar 

  7. Vogel, S.S., Thaler, C. & Koushik, S.V. Fanciful FRET. Sci. STKE 2006, re2 (2006).

    PubMed  Google Scholar 

  8. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).

    Book  Google Scholar 

  9. Zheng, J. & Zagotta, W.N. Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28, 369–374 (2000).

    Article  CAS  Google Scholar 

  10. Zagotta, W.N. & Siegelbaum, S.A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).

    Article  CAS  Google Scholar 

  11. Craven, K.B. & Zagotta, W.N. Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J. Gen. Physiol. 124, 663–677 (2004).

    Article  CAS  Google Scholar 

  12. Johnson, J.P., Jr & Zagotta, W.N. Rotational movement during cyclic nucleotide-gated channel opening. Nature 412, 917–921 (2001).

    Article  CAS  Google Scholar 

  13. Hua, L. & Gordon, S.E. Functional interactions between A′ helices in the C-linker of open CNG channels. J. Gen. Physiol. 125, 335–344 (2005).

    Article  CAS  Google Scholar 

  14. Matulef, K., Flynn, G.E. & Zagotta, W.N. Molecular rearrangements in the ligand-binding domain of cyclic nucleotide-gated channels. Neuron 24, 443–452 (1999).

    Article  CAS  Google Scholar 

  15. Chanda, B., Asamoah, O.K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005).

    Article  CAS  Google Scholar 

  16. Islas, L.D. & Zagotta, W.N. Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J. Gen. Physiol. 128, 337–346 (2006).

    Article  CAS  Google Scholar 

  17. Gordon, S.E., Varnum, M.D. & Zagotta, W.N. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19, 431–441 (1997).

    Article  CAS  Google Scholar 

  18. Brown, R.L., Snow, S.D. & Haley, T.L. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75, 825–833 (1998).

    Article  CAS  Google Scholar 

  19. Chanda, B. et al. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 8, 1619–1626 (2005).

    Article  CAS  Google Scholar 

  20. Fernandez, J.M., Taylor, R.E. & Bezanilla, F. Induced capacitance in the squid giant axon. Lipophilic ion displacement currents. J. Gen. Physiol. 82, 331–346 (1983).

    Article  CAS  Google Scholar 

  21. Inouye, S. & Tsuji, F.I. Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Lett. 351, 211–214 (1994).

    Article  CAS  Google Scholar 

  22. Ostergaard, H., Henriksen, A., Hansen, F.G. & Winther, J.R. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J. 20, 5853–5862 (2001).

    Article  CAS  Google Scholar 

  23. Zheng, J., Varnum, M.D. & Zagotta, W.N. Disruption of an intersubunit interaction underlies Ca2+-calmodulin modulation of cyclic nucleotide-gated channels. J. Neurosci. 23, 8167–8175 (2003).

    Article  CAS  Google Scholar 

  24. Wainger, B.J., DeGennaro, M., Santoro, B., Siegelbaum, S.A. & Tibbs, G.R. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411, 805–810 (2001).

    Article  CAS  Google Scholar 

  25. Vemana, S., Pandey, S. & Larsson, H.P. S4 movement in a mammalian HCN channel. J. Gen. Physiol. 123, 21–32 (2004).

    Article  CAS  Google Scholar 

  26. Ye, S., Li, Y., Chen, L. & Jiang, Y. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126, 1161–1173 (2006).

    Article  CAS  Google Scholar 

  27. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  28. Popovych, N., Sun, S., Ebright, R.H. & Kalodimos, C.G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    Article  CAS  Google Scholar 

  29. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  Google Scholar 

  30. Kaupp, U.B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).

    Article  CAS  Google Scholar 

  31. Gordon, S.E. & Zagotta, W.N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron 14, 177–183 (1995).

    Article  CAS  Google Scholar 

  32. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  33. Cha, A. & Bezanilla, F. Structural implications of fluorescence quenching in the Shaker K+ channel. J. Gen. Physiol. 112, 391–408 (1998).

    Article  CAS  Google Scholar 

  34. Wolber, P.K. & Hudson, B.S. An analytic solution to the Forster energy transfer problem in two dimensions. Biophys. J. 28, 197–210 (1979).

    Article  CAS  Google Scholar 

  35. Flynn, G.E. & Zagotta, W.N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).

    Article  CAS  Google Scholar 

  36. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  37. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Utsugi, S. Cunnington and G. Sheridan for technical assistance, E.R. Liman (University of Southern California) for the pGEMHE oocyte expression vector, R.T. Moon (University of Washington) for the plasmid encoding EGFP-F, W. Almers, K. Craven, G. Flynn, A. Merz, M. Puljung and N. Shuart for comments on the manuscript, and L. Islas for stimulating discussions. This work was supported by the Howard Hughes Medical Institute, a grant from the National Eye Institute of the US National Institutes of Health (EY10329) to W.N.Z. and a postdoctoral fellowship from the Jane Coffin Childs Foundation to J.W.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N Zagotta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taraska, J., Zagotta, W. Structural dynamics in the gating ring of cyclic nucleotide–gated ion channels. Nat Struct Mol Biol 14, 854–860 (2007). https://doi.org/10.1038/nsmb1281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing