We derive, discuss, and test against experimental data an analytical model of the gain saturation in microchannel plate (MCP) devices. By introducing a simple recharging circuit for each dynode, we extend the well‐known, unsaturated gain model of Eberhardt to a microchannel operating in condition of gain saturation and show that the amplification of a current pulse and the voltage drop along the channel can be described by a pair of coupled differential equations. Solutions of these equations are given in various conditions, including an approximate solution, valid in the case of weak saturation and a general solution in implicit form. The behavior of a microchannel operating in current mode is studied by finding the transient and steady‐state solutions obtained with an input step current wave form. Exact solutions are given for the charge gain of pulses with a short duration, compared to the dynode recharging time, and for the gain recovery of a microchannel after the amplification of a short pulse. The single channel saturation model is then extended to multistage MCP assemblies by taking into account the statistical distribution of the photoelectrons at the input and the spread of the multiplied electron cloud in the interplate gaps. The expressions found in this way are used for the best fit of experimental data from a Z‐stack MCP photomultiplier operated in single and double pulse mode. Satisfactory agreement between the model and experimental data is obtained in the case of single pulse measurements, finding a reduced chi squared χ2=4.67. Less satisfactory agreement is found for double pulse data, giving χ2=7.46 and a clear indication that the model may be significantly improved by taking into account the charge redistribution among the dynodes during the recharging process, neglected in the present formulation.

1.
J. L.
Wiza
,
Nucl. Instrum. Methods
162
,
587
(
1979
).
2.
G. W.
Fraser
,
M. T.
Pain
,
J. E.
Lees
, and
J. F.
Pearson
,
Nucl. Instrum. Methods A
306
,
247
(
1991
).
3.
G. W.
Fraser
,
Nucl. Instrum. Methods A
291
,
595
(
1990
).
4.
C.
Loty
,
Acta Electron.
14
,
107
(
1971
).
5.
W.
Baumgartner
and
J.
Schmidt
,
J. Phys. D
5
,
1769
(
1972
).
6.
W.
Baumgartner
and
B.
Gilliard
,
Adv. Electron. Electron Phys.
40A
,
113
(
1972
).
7.
G. W.
Fraser
,
J. F.
Pearson
,
G. C.
Smith
,
M.
Lewis
, and
M. A.
Barstow
,
IEEE Trans. Nucl. Sci.
NS-30
,
455
(
1983
).
8.
A. Sardella and R. Pasqualotto, “Modello interpretativo del comportamento in saturazione e dei meccanismi di ripristino dell’MCP utilizzato dal Thomson scattering,” Internal Note, Istituto Gas Ionizzati del CNR, Padova, 1991 (unpublished).
9.
M.
Bassan
,
L.
Giudicotti
,
R.
Pasqualotto
, and
A.
Sardella
,
SPIE
2006
,
170
(
1993
).
10.
P. B.
Soul
,
Nucl. Instrum. Methods
97
,
555
(
1971
).
11.
B. A.
Jacoby
,
D. E.
Kotecki
, and
R. D.
Lear
,
IEEE Trans. Nucl. Sci.
NS-30
,
4624
(
1983
).
12.
E. H.
Eberhartd
,
IEEE Trans. Nucl. Sci.
NS-28
,
712
(
1981
).
13.
M.
Liptak
,
W. G.
Sandie
,
E. G.
Shelley
,
D. A.
Simpson
, and
H.
Rosembauer
,
IEEE Trans. Nucl. Sci.
NS-31
,
780
(
1984
).
14.
W. B.
Feller
,
SPIE
1243
,
149
(
1990
).
15.
R. Y.
Levine
and
M.
Zatet
,
Rev. Sci. Instrum.
62
,
2602
(
1991
).
16.
G. W.
Fraser
,
M. T.
Pain
, and
J. E.
Lees
,
Nucl. Instrum. Methods A
327
,
328
(
1993
).
17.
E.
Gatti
,
K.
Oba
, and
P.
Rehak
,
IEEE Trans. Nucl. Sci.
NS-30
,
461
(
1983
).
18.
D. C.
Anacker
and
J. L.
Erskine
,
Rev. Sci. Instrum.
62
,
1246
(
1991
).
19.
D. J.
Cho
and
G. M.
Morris
,
SPIE
976
,
172
(
1988
).
20.
A.
Sharma
and
J. G.
Walker
,
Quantum Opt.
1
,
11
(
1989
).
21.
A.
Sharma
and
J. G.
Walker
,
Rev. Sci. Instrum.
63
,
5784
(
1992
).
22.
E. H.
Eberhartd
,
Appl. Opt.
18
,
1418
(
1979
).
23.
W. B.
Feller
,
IEEE Trans. Electron Devices
ED-32
,
2479
(
1985
).
24.
I. P.
Csorba
,
Appl. Opt.
19
,
3863
(
1980
).
25.
The transit time in a typical MCP is of the order of 10−10s, negligible compared to the value of the time constant RC which is of the order of 10−3s (see Ref. 12). The amplification of a current pulse can be considered to occur simultaneously at all the dynodes and therefore a common time base can be used.
26.
M.
Bassan
,
R.
Pasqualotto
,
A.
Sardella
, and
L.
Giudicotti
,
Rev. Sci. Instrum.
61
,
2846
(
1990
).
27.
The existance of an explicit solution is not strictly necessary because a best-fit routine can be implemented also from numerical solutions of implicit expressions. However, explicit expressions are by far preferred when simple and fast converging algorithms are sought.
28.
All the calculations in this paper including the best fit of Sec. VII have been carried out on an Apple Macintosh IIsi using the mathematical package MATHCAD v2.0.6 by MATHSOFT Inc., Cambridge, MA.
29.
To calculate these and other expressions as functions of the dynode number, n should replace N everywhere except in the quantity G.
30.
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, London, 1978).
31.
L.
Giudicotti
,
M.
Bassan
,
A.
Sardella
, and
E.
Perdon
,
SPIE
1158
,
173
(
1989
).
32.
L. Giudicotti, M. Bassan, and A. Sardella, Atti di Conferenze, 6 Congresso Nazionale di Elettronica Quantistica e Plasmi (Roma 1990) (Società Italiana di Fisica, 1991), Vol. 29, p. 493.
33.
O. H. W.
Siegmund
,
K.
Coburn
, and
R. F.
Malina
,
IEEE Trans. Nucl. Sci.
NS-32
,
443
(
1985
).
34.
M.
Audier
,
J. C.
Delmotte
, and
J. P.
Boutot
,
Rev. Phys. Appl.
13
,
188
(
1978
).
35.
S. Brandt, Statistical and Computational Methods in Data Analysis (North-Holland, Amsterdam, 1976).
36.
J. L.
Wiza
,
P. R.
Henkel
, and
R. L.
Roy
,
Rev. Sci. Instrum.
48
,
1217
(
1977
).
37.
M. L.
Edgar
,
R.
Kessel
,
J. S.
Lapington
, and
D. M.
Walton
,
Rev. Sci. Instrum.
60
,
3673
(
1989
).
38.
Test Report for F4149 SN 048801, ITT Electro Optical Products Division, Ft. Wayne, IN (unpublished).
39.
P. M.
Bell
,
J. D.
Kilkenny
,
O.
Landen
, and
R. L.
Hanks
,
Rev. Sci. Instrum.
63
,
7072
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.