Elsevier

Nuclear Physics A

Volume 177, Issue 2, 20 December 1971, Pages 337-378
Nuclear Physics A

Fission fragment K x-ray emission and nuclear charge distribution for thermal neutron fission of 233U, 235U, 239Pu and spontaneous fission of 252Cf

https://doi.org/10.1016/0375-9474(71)90297-1Get rights and content

Abstract

The emission of K X-rays by fission fragments within ≈ 1 nsec after fission has been studied as a function of fragment mass and nuclear charge for thermal neutron-induced fission of 233U, 235U, 239Pu and spontaneous fission of 252Cf. This work is based on a simultaneous measurement of the fragment kinetic energies to obtain the fragment masses and high-resolution measurement of the characteristic energy spectra of the K X-rays emitted by the fragments to determine their nuclear charges. For all four fissioning systems the K X-ray yields per fragment were found to be strongly dependent on nuclear structure. Near closed nuclear shells the K X-ray yields for odd-Z nuclei are enhanced relative to even-Z nuclei. Away from closed shells the K X-ray yields increase rapidly with Z and A, and the odd-even Z-fluctuations diminish. With an approximate parameterization for the dependence of K X-ray yields on Z andA, the average nuclear charges of the primary fragments represented as a linear function of their pre-neutron-emission mass (charge division) and the width of the charge distribution about the average values (charge dispersion) were obtained. The linear charge division functions obtained in this work are in good agreement with existing radiochemical data and with recent β-decay chain-length measurements. The average charge dispersion (before neutron emission) found in this work for 235U(n, f) (σz = 0.40 ±0.05 charge units) is narrower than the charge dispersion (0.56±0.06) determined radiochemically (after neutron emission).

References (54)

  • K. Sistemich et al.

    Nucl. Phys.

    (1969)
    K. Sistemich

    thesis

    (1969)
  • R.L. Watson et al.

    J. Chem. Phys.

    (1967)
  • A.H. Wapstra et al.

    Nuclear spectroscopy tables

  • J.C.D. Milton et al.
  • H.W. Schmitt et al.

    Phys. Rev.

    (1965)
  • P.A. Seeger et al.

    Los Alamos Scientific Laboratory report LA-3751

    (1967)
  • J. Wing et al.

    Phys. Rev.

    (1967)
  • W.D. Myers et al.

    Nucl. Phys.

    (1966)

    Ark. Fys.

    (1966)
  • N. Rosch

    Z. Phys.

    (1968)
  • V.A. Rubchenya

    Sov. J. Nucl. Phys.

    (1969)
  • E. Cheifetz et al.

    Phys. Rev. Lett.

    (1970)
    E. Cheifetz et al.

    Phys. Rev. Lett.

    (1970)
  • N. Feather

    Phys. Rev.

    (1970)
  • T.D. Thomas et al.

    Phys. Rev.

    (1967)
  • A.C. Pappas et al.
  • A.C. Wahl et al.
  • W. Nörenberg

    Z. Phys.

    (1956)
  • E. Konecny et al.

    Z. Phys.

    (1970)
  • L.E. Glendenin et al.

    Phys. Rev.

    (1965)
  • S.S. Kapoor et al.

    Phys. Rev.

    (1965)
  • L.E. Glendenin et al.

    Phys. Lett.

    (1965)
  • R.L. Watson et al.

    Phys. Rev.

    (1967)
  • R.L. Watson et al.

    Phys. Rev.

    (1970)
  • W. Reisdorf

    Z. Phys.

    (1968)
  • L.E. Glendenin et al.
  • H.W. Schmitt et al.

    Nucl. Instr.

    (1966)
  • H.W. Schmitt et al.

    Phys. Rev.

    (1966)
  • J.H. Neiler et al.

    Phys. Rev.

    (1966)
  • Cited by (135)

    • Fission fragment decay simulations with the CGMF code

      2021, Computer Physics Communications
    • Fission fragment atomic number measurements using Bragg detectors

      2020, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    • Charge distribution of light mass fission products in the fast neutron induced fission of <sup>232</sup>Th, <sup>238</sup>U, <sup>240</sup>Pu and <sup>244</sup>Cm

      2017, Applied Radiation and Isotopes
      Citation Excerpt :

      The charge distribution studies in the neutron induced fission of actinides have been carried out by using different physical (Reisdorf et al., 1971; Cheifetz et al., 1971; Brissot et al., 1975, 1977; Balestrini et al., 1979; Shmid et al., 1981; Mariolopoulos et al., 1981; Djebara et al., 1984, 1989; Datta et al., 1988; Siegert et al., 1976; Clerc et al., 1975; Lang et al., 1980; Bocquet et al., 1980; Schmitt et al., 1984; Quade et al., 1988; Rochman et al., 2002; Boucheneb et al., 1989, 1991; Schillebeeckx et al., 1994; Medkour et al., 1997) and radiochemical technique (Wahl et al., 1969; Notea, 1969; Balestrini and Forman, 1974; Wolfsberg, 1975; Amiel and Feldstein, 1975; Amiel et al., 1977; Izak-Biran and Amiel, 1977, 1978; Gäggeler and von Gunten, 1978; Erten and Aras, 1979; Wahl, 1980, 1988; Dickens and McConnell, 1981a, 1981b, 1983; Erten et al., 1982; Meixler et al., 1983; Dobreva and Nenoff, 1984; Haddad et al., 1987, 1988, 1989; Srivastava and Denschlag, 1989; Hentzschel and Denschlag, 1990; Naik et al., 1997, 1998, 2003, 2004). Except few (Reisdorf et al., 1971; Cheifetz et al., 1971; Brissot et al., 1975, 1977; Balestrini et al., 1979; Shmid et al., 1981), rest of the physical techniques (Mariolopoulos et al., 1981; Djebara et al., 1984, 1989; Datta et al., 1988; Siegert et al., 1976; Clerc et al., 1975; Lang et al., 1980; Bocquet et al., 1980; Schmitt et al., 1984; Quade et al., 1988; Rochman et al., 2002; Boucheneb et al., 1989, 1991; Schillebeeckx et al., 1994; Medkour et al., 1997) are used only for light mass fission products, in the thermal neutron induced fission of 229Th to 249Cf and in the spontaneous fission of 252Cf. On the other hand, radiochemical separation in combination with γ-ray spectrometric technique (Wahl et al., 1969; Notea, 1969; Balestrini and Forman, 1974; Wolfsberg, 1975; Amiel and Feldstein, 1975; Amiel et al., 1977; Izak-Biran and Amiel, 1977, 1978; Gäggeler and von Gunten, 1978; Erten and Aras, 1979; Wahl, 1980, 1988; Dickens and McConnell, 1981a, 1981b, 1983; Erten et al., 1982; Meixler et al., 1983; Dobreva and Nenoff, 1984; Haddad et al., 1987, 1988, 1989; Srivastava and Denschlag, 1989; Hentzschel and Denschlag, 1990; Naik et al., 1997, 1998, 2003, 2004) is used for both light and heavy mass fission products in the thermal neutron induced fission of 229Th to 249Cf and in the spontaneous fission of 252Cf.

    View all citing articles on Scopus

    Work performed undeer the auspices of the US Atomic Energy Commission.

    Nuclear Physics Laboratory, University of Washington, Seattle, Wash.

    ††

    Chemistry Department, University of Michigan, Ann Arbor, Michigan.

    View full text