Elsevier

Icarus

Volume 37, Issue 3, March 1979, Pages 612-626
Icarus

Deep radio occultations and “evolute flashes”; their characteristics and utility for planetary studies

https://doi.org/10.1016/0019-1035(79)90017-4Get rights and content

Abstract

Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.

References (17)

There are more references available in the full text version of this article.

Cited by (21)

  • On the black hole lens and its foci

    1989, Advances in Space Research
View all citing articles on Scopus
View full text