Skip to main content
Log in

The achievement of reproducible temperature prodgrammed retention indices in gas chromatography when using different columns and detectors

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

It has been found that the ratio\(\frac{{r \cdot t_0 }}{\beta }\), where r is the heating rate, t0 is the gas hold-up time of the column and β is the phase ratio of the column used, is a most explicit and convenient parameter in linear temperatur-programmed gas chromatography for reproducing temperature-programmed retention indices, ITP. For two columns of different sizes (length, inner diamter), working under different heating rates with the same or different carrier gases at different gas flow-rates, as long as the initial oven temperature, T0, phase ratio, β, and their r·t0/β ratios are kept unchanged, the ITP value of a solute can be reproduced within 1–2 i.u. on either OV-101 or PEG-20M columns. When a combined gas chromatography-mass spectrometry technique is used applying vacuum at the column outlet reduces t0. Nevertheless, r·t0/β can still be kept unchanged by a proper choice of the oven heating rate, and thus a total ion chromatogram (TIC), quite similar to the corresponding gas chromatogram in shape, can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Demirgian, Trends in Analytical Chemistry, (6)3 58 (1987).

    Article  Google Scholar 

  2. W. Jennings, T. Shibamoto, “Qualititative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography”, Academic Press, 1980.

  3. J. F. Sprouse, A. Varano, American Laboratory, Sept. 54 (1984).

    Google Scholar 

  4. F. Lancas, F. David, F. Sandra, HRC&CC,11, 73 (1988).

    Google Scholar 

  5. K. Grob, G. Grob, Chromatographia,16, 481 (1983).

    Article  Google Scholar 

  6. R. J. Pell, H. L. Gearhart, HRC&CC,10, (1987).

  7. W. L. Saxton, J. Chromatogr.,312, 59 (1984).

    Article  Google Scholar 

  8. W. L. Saxton, J. Chromatogr.,357, 1 (1986).

    Article  PubMed  Google Scholar 

  9. L. Weber, HRC&CC,9, 446 (1986).

    Google Scholar 

  10. H. Knoeppel, M. De Bortoli, A. Peil, H. Vissers, J. Chromatogr.,279, 483 (1983).

    Article  Google Scholar 

  11. T. S. Wang, Y. L. Sun, J. Chromatogr.,407, 79 (1987).

    Article  Google Scholar 

  12. J. Curvers, J. Rijks, C. Cremars, HRC&CC,8, 607 (1985).

    Google Scholar 

  13. Y. Guan, J. Kiraly, J. Rijsk, J. Chromatogr.,472, 129 (1989).

    Article  Google Scholar 

  14. R. V. Golovnya, V. P. Uraletz, J. Chromatogr.36, 276 (1968).

    Google Scholar 

  15. T. S. Wang, Y. L. Sun, J. Chromatogr.,330, 167 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H.F., Sun, Y.L. The achievement of reproducible temperature prodgrammed retention indices in gas chromatography when using different columns and detectors. Chromatographia 29, 39–43 (1990). https://doi.org/10.1007/BF02261137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02261137

Key Words

Navigation