Skip to main content
Log in

Monolayers of rod-shaped and disc-shaped liquid crystalline compounds at the air-water interface

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Calamitic (rod-shaped) and discotic (disc-shaped) thermotropic liquid crystalline (LC) compounds were spread at the air-water interface, and their ability to form monolayers was studied. The calamitic LCs investigated were found to form monolayers which behave analogously to conventional amphiphiles such as fatty acids. The spreading of the discotic LCs produced monolayers as well, but with a behaviour different from classical amphiphiles. The areas occupied per molecule are too small to allow the contact of all hydrophilic groups with the water surface and the packing of all hydrophobic chains. Various molecular arrangements of the discotics at the water surface to fit the spreading data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fendler JH (1982) Membrane Mimetic Chemistry, J Wiley, New York

    Google Scholar 

  2. Kelker H, Hatz R (1980) Handbook of Liquid Crystals, Verlag Chemie, Weinheim

    Google Scholar 

  3. Dörfler HD, Kerscher W, Sackmann H (1972) Z Phys Chem 251:314

    Google Scholar 

  4. Diep-Quang H, Überreiter K (1980) Coll & Polym Sci 258:1055

    Google Scholar 

  5. Rondelez F, Koppel D (1982) J Physique 43:1371

    Google Scholar 

  6. Daniel MF, Lettington OC, Small SM (1983) Mol Cryst Liq Cryst 96:373

    Google Scholar 

  7. Suresh KA, Blumstein A, Rondelez F (1985) J Physique 46:453

    Google Scholar 

  8. Okahata Y, Kunitake T (1980) Ber Bunsenges Phys Chem 84:550

    Google Scholar 

  9. Steven JH, Hann RA, Barlow WA, Laird T (1983) Thin Solid Films 99:71

    Google Scholar 

  10. Mooney III WF, Brown PE, Russel JC, Costa SB, Pedersen LG, Whitten DG (1984) J Am Chem Soc 106:5659

    Google Scholar 

  11. Möbius D (1978) Ber Bunsenges Phys Chem 82:848

    Google Scholar 

  12. Heesemann J (1980) J Am Chem Soc 102:2167

    Google Scholar 

  13. Shimomura M, Ando R, Kunitake T (1983) Ber Bunsenges Phys Chem 87:1134

    Google Scholar 

  14. Blinov LM, Davydova NN, Lazarev W, Yudin SG (1982) Sov Phys Solid State 24:1523

    Google Scholar 

  15. Kunitake T, Okahata Y (1980) J Am Chem Soc 102:549

    Google Scholar 

  16. Sprintschnik G, Sprintschnik HW, Kirsch PP, Whitten DG (1977) J Am Chem Soc 99:4947

    Google Scholar 

  17. Gaines GL, Behnken PE, Valenty SJ (1978) J Am Chem Soc 100:6549

    Google Scholar 

  18. Tieke B, Enkelmann V, Kapp H, Lieser G, Wegner G (1981) J Macromol Sci A15:1045

    Google Scholar 

  19. Koch H, Laschewsky A, Ringsdorf H, Teng K, Makromol Chem, in press

  20. Laschewsky A, Ringsdorf H, Schmidt G, Thin Solid Films, in press

  21. Nakanishi T (1984) J Chem Soc Chem Commun 1543

  22. Gaines GL (1966) Insoluble Monolayers at the Liquid-Gas Interface, Interscience, New York

    Google Scholar 

  23. Pindak R, Moncton D (1982) Physics Today 35(5):57

    Google Scholar 

  24. Chandrasekhar S, Sadashiva BK, Suresh KA, Madhusudana NV, Kumar S, Shashidar R, Venkatesh G (1979) J Physique Coll C3,40:120

    Google Scholar 

  25. Chandrasekhar S (1983) Phil Trans R Soc Lond A 309:93

    Google Scholar 

  26. Billard J, Dubois JC, Nguyen Huu Tinh, Zann A (1978) Nouv J Chim 2:535

    Google Scholar 

  27. Claisen L (1919) Liebigs Ann Chem 418:97

    Google Scholar 

  28. Shibaev VP, Kostromin SG, Platé NA (1982) Eur Polymer J 18:651

    Google Scholar 

  29. Ringsdorf H, Schmidt HW, Baur G, Kiefer R (1985) (ed) Chapoy LL, in Recent Advances in Liquid Crystalline Polymers, Elsevier, London

    Google Scholar 

  30. Portugall M, Ringsdorf H, Zentel R (1982) Makromol Chem 183:2311

    Google Scholar 

  31. Kreuder W, Ringsdorf H (1983) Makromol Chem Rapid Commun 4:807

    Google Scholar 

  32. Kreuder W, Ringsdorf H, Tschirner P (1985) Makromol Chem Rapid Commun 6:367

    Google Scholar 

  33. Albrecht O (1983) Thin Solid Films 99:227

    Google Scholar 

  34. Möbius D, Orrit M, Grüniger H, Meyer H, Thin Solid Films, in press

  35. Ruaudel-Teixier A, Barraud A, Belbeoch B, Rouillay M (1983) Thin Solid Films 99:33

    Google Scholar 

  36. Jones R, Tredgold RH, Hodge P (1983) Thin Solid Films 99:25

    Google Scholar 

  37. Baker S, Petty MC, Roberts GG, Twigg MV (1983) Thin Solid Films 99:53

    Google Scholar 

  38. Grüniger H, Möbius D, Meyer H (1983) J Chem Phys 79:3701

    Google Scholar 

  39. Snow AW, Jarvis NL (1984) J Am Chem Soc 106:4706

    Google Scholar 

  40. Whitten DG, Eaker DW, Horsey BE, Schmehl RH, Worsham PR (1978) Ber Bunsenges Phys Chem 82:858

    Google Scholar 

  41. Fryer JR, Hann RA, Eyres BL (1985) Nature 313:382

    Google Scholar 

  42. Möhwald H, Miller A, Stich W, Knoll W, Ruaudel-Teixier A, Lehmann T, Fuhrhop JH, Thin Solid Films, in press

  43. Alexander AE, J Chem Soc 1937:1813

  44. Tweet AG, Gaines jr GL, Bellamy WD (1964) J Chem Phys 41:1008

    Google Scholar 

  45. Demus D, Zaschke H (1984) Flüssige Kristalle in Tabellen H, VEB Grundstoffindustrie, Leipzig

    Google Scholar 

  46. Destrade C, Nguyen Huu Tinh, Gasparoux H, Malthete J, Levelut AM (1981) Mol Cryst Liq Cryst 71:111

    Google Scholar 

  47. Attaching strongly hydrophilic groups to discs leads to lyotropic discotic mesophases: Gaspard S, Hochapfel A, Viovy R (1979) C R Hebd Séances Acad Sci C289:387

    Google Scholar 

  48. Boden N, Bushby RJ, Hardy C (1985) J Physique Lett 46:L325

    Google Scholar 

  49. Keller-Griffith R, Ringsdorf H, Vierengel A, J Am Chem Soc, in press

  50. Vogel V, Möbius D, Thin Solid Films, in press

  51. Musgrave OC, Webster CJ, J Chem Soc (C) 1971:1397

  52. Neifert IE, Bartow E (1943) J Am Chem Soc 65:1770

    Google Scholar 

  53. Fatiadi AJ, Sager WF, Organic Synthesis Collective Vol V, 595

  54. Hatada M, Nishii M, Hirota K (1972) J Coll & Interf Sci 454:502

    Google Scholar 

  55. Levelut AM (1979) J Physique Lett 40:L81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, O., Cumming, W., Kreuder, W. et al. Monolayers of rod-shaped and disc-shaped liquid crystalline compounds at the air-water interface. Colloid & Polymer Sci 264, 659–667 (1986). https://doi.org/10.1007/BF01469526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01469526

Key words

Navigation