Skip to main content
Log in

Petrology and geochemistry of peridotites and associated vein rocks of Zabargad Island, Red Sea, Egypt

Petrologie und Geochemie der Peridotite und der mit diesen vergesellschafteten Ganggesteine der Insel Zabargad, Rotes Meer, Ägypten

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Zabargad (St. John's) Island in the Red Sea contains three ultramafic bodies, one of which bas produced the famous gem olivine (peridot). The ultramafic rock types consist of two major groups—the peridotites and the vein rocks within them. The peridotites are divided into three groups: primitive, depleted and metasomatized. The primitive peridotites are the most abundant and are represented by mainly pristine spinellherzolites which have chemical compositions representative of the subcontinental upper mantle. The depleted peridotites are mainly harzburgites and nome dunites and both are similar to worldwide occurrences. The most depleted peridotites also appear to have the greatest metasomatic additions of incompatible elements, as has been noted at other localities. Metasomatic additions were clearly accompanied by tectonic shearing. Metasomatism included infiltration of incompatible elements and the formation of porphyroblasts of clinopyroxene, amphibole, Al-spinel and plagioclase; il took place under a variety of p-T conditions and with fluids of differing compositions.

The vein rocks are mainly monomineralic and comprise olivinites, orthopyroxenites, clinopyroxenites, websterites, hornblendites and plagioclasites. These rocks are believed to have formed from fluids similar to that which metasomatized the host rock, rather than by some kind of igneous process. The fluids were derived from peridotite reservoirs (fertile and depleted) and apparently were in equilibrium with these reservoirs. Highly abundant fluid inclusions document the hypersaline and CO2-dominated character of these fluids. Monomineralic vein rocks are closely associated with metasomatic and tectonic processes, and there is a complete transition between metasomatic impregnation and formation of vein rocks. These processes may have also been active in other peridotite bodies of the world, as was earlier recognized and documented in the Seiad Ultramafic Complex, California. Metasomatism is evident along clinopyroxenite and hornblendite veins, whereas orthopyroxenites, olivinites and plagioclasites do not show any interaction with the wall rocks. Olivinites are probably the latest (lowest p-T) vein rock type, and the latest olivine which formed within their open cavities became the gem peridot.

Zabargad ultramafic rocks preserve relic phases indicating an initial depth of origin greater than 85 km. Clinopyroxenites preserve the memories of the highest p-T conditions and they may be the first vein rock type formed in the peridotites. The p-T path of uplift coincides with the oceanic geotherm at great depth but deviates systematically from it with falling pressure in a series of tectonic stages accompanied by metasomatism and recrystallization. The p-T and petrologic history indicates rapid uplift, a feature which is supported by extensive contact metamorphism of the associated metasediments.

Zusammenfassung

Auf der Insel Zabargad (St.John's Island) im Roten Meer befinden sich drei Peridotit-Körper von denen einer seit Jahrtausenden den berühmten Peridot (Edelolivin) geliefert hat. Die ultramafischen Gesteine von Zabargad gliedern sich in zwei Hauptgruppen: die Peridotite und die mit diesen vergesellschafteten Ganggesteine. Die Peridotite können in drei Gruppen gegliedert werden: die primitiven, die verarmten und die metasomatisch veränderten Peridotite. Am meisten verbreitet auf Zabargad sind die primitiven Peridotite. Diese sind meist Spinell-Lherzolithe mit einer chemischen Zusammensetzung, welche dem subkontinentalen Oberen Erdmantel entspricht. Die verarmten Peridotite werden hauptsächlich von Harzburgiten und einigen wenigen Duniten repräsentiert. Beide sind jenen aus anderen Vorkommen der Welt sehr ähnlich. Die am stärksten verarmten Peridotite scheinen auch die stärksten metasomatischen Veränderungen erfahren zu haben—ein Trend, der auch schon an anderen ultramafischen Komplexen erkannt wurde. Metasomatische Anreicherungen inkompatibler Spurenelemente sind häufig direkt mit tektonischer Verformung und Kataklase gekoppelt. Die Metasomatose ist als Infiltration inkompatibler Elemente erkennbar und führte auch zur Bildung von Porphyroblasten von Klinopyroxen, Amphibol, Al-Spinell und Plagioklas. Diese Bildungen fanden unter verschiedenen p-T-Bedingungen statt und erfolgten durch Fluide mit unterschiedlichen Zusammensetzungen.

Die (meist ultramafischen) Ganggesteine sind häufig monomineralisch und umfassen Olivinite, Orthopyroxenite, Klinopyroxenite, Websterite, Hornblendite und Plagioklasite. Wir glauben, daß diese Gesteine von Fluiden gebildet wurden, welche ähnlich jenen waren, die die Metasomatosen der Peridotite verursachten. Diese Genese wird von uns der magmatischen vorgezogen. Die Fluide stammten aus peridotitischen Reservoiren (fertilen und verarmten) und waren mit diesen offenbar im Gleichgewicht. Die Ganggesteine sind sehr reich an “fluid inclusions”, welche allerdings keine Flüssigkeit enthalten, sondern nur Festkörper (Salze) und CO2 (± N2), also einen trockenen, hypersalinen Charakter haben. Auch die monomineralischen Ganggesteine sind eng mit tektonischen Prozessen verknüpft und somit auch mit metasomatischen Prozessen. Es existieren vollkommene Übergänge von metasomatischen Imprägnationen bis zu echten Ganggesteinen. Solche Prozesse waren offensichtlich auch weltweit in anderen ultramafschen Komplexen aktiv und wurden schon im Seiad Ultramafc Complex in Kalifornien erkannt und beschrieben. Metasomatismus begleitet überlicherweise die Klinopyroxenit- und Hornblendit-Gänge. Orthopyroxenite, Olivinite und auch Plagioklasite zeigen jedoch keine Wechselwirkung mit den Wirtgesteinen. Olivinite sind wahrscheinlich die zuletzt gebildeten Ganggesteine. Der zuletzt sich bildende Olivin wurde der schönste und zum gesuchten Peridot.

Alle ultramafschen Gesteine von Zabargad enthalten Minerale aus verschiedenen Bildungsepochen. Einige Relikte erinnern an eine Herkunft aus einer Tiefe von mehr als 85 km. Klinopyroxenite konservierten die höchsten p-T-Bedingungen. Sie waren daher wahrscheinlich die ersten (noch erhaltenen) Ganggesteine, welche sich im peridotitischen Erdmantel unterhalb des heutigen Roten Meeres bildeten. Der p-T-Pfad der Zabargad Ultramafitite deckt sich in großer Tiefe mit der ozeanischen Geotherme. Mit abnehmender Tiefe entfernt sich dieser Pfad allerdings zunehmend von der Geotherme und läßt eine Reihe von tektonischen Aktivitäten verbunden mit Metasomatose und Rekristallisation erkennen. Die p-T-Geschichte der Zabargad Ultramaftite deuten auf einen raschen Aufstieg aus dem Erdmantel hin. Diese Daten werden durch die weitverbreitete und intensive Kontaktmetamorphose der mit den Peridotiten assoziierten Metasedimenten unterstützt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee AL, Ray L (1970) Correction factors for electron probe micronalysis of silicates, oxides, carbonates, phosphates and sulfides. Anal Chem 42: 1408–1414

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 26: 382–403

    Google Scholar 

  • Bonatti E, Hamlyn PR, Ottonello G (1981) The upper mande beneath a young oceanic rift: peridotites from the Island of Zabargad (Red Sea). Geology 9: 474–479

    Google Scholar 

  • Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Santacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, El Tahir MA (1983) Zabargad (St. John's) Island: an uplifted fragment of sub-Red Sea lithosphere. J Geol Soc London 140: 677–690

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the Island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91: 599–631

    Google Scholar 

  • Boudier F, Nicolas A (1972) Fusion partielle gabbroique de la lherzolite de Lanzo. Schweiz Mineral Petrogr Mitt 52: 39–56

    Google Scholar 

  • Boudier F, Nicolas A, Ji S, Kienast JR, Mevel C (1988) The gneiss of Zabargad Island: deep crust of a rift. Tectonophysics 150: 209–227

    Google Scholar 

  • Boudreau AE, Mathez EA, McCallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld Complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27: 967–986

    Google Scholar 

  • Bowen NL, Tuttle OF (1949) The system MgO-SiO2-H2O. Geol Soc Am Bull 60:439–460

    Google Scholar 

  • Brueckner HK, Zindler A, Seyler M, Bonatti E (1988) Zabargad and the isotopic evolution of the sub-Red Sea mande and crust. Tectonophysics 150: 163–176

    Google Scholar 

  • Bussod G, Williams D (1987) Thermal evolution of the lower crust and upper mantle in the southern Rio Grande Rift. Terra Cognita 7: 604

    Google Scholar 

  • Carella R, Scarpa I (1962) Geological results of exploration in Sudan by AGIP Mineraria. 4th Arab Petrol Congr, Beirut. 23p

  • Cawthorn RG (1975) The amphibole peridotite-metagabbro complex, Finero, northern Italy. J Geol 8: 437–457

    Google Scholar 

  • Clarke SP, Ringwood AE (1964) Density distribution and constitution of the mande. Rev Geophys 2: 35–88

    Google Scholar 

  • Clocchiatti R, Massare D, Jehanno C (1981) Origine hydrothermale des olivines gemmes de l'ile de Zabargad (St. John's) Mer Rouge, par l'etude de leurs inclusions. Bull Mineral 104: 354–360

    Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In:Kornprobst J (ed) Kimberlites II. The mande and crust-mantle relationships. Elsevier, Amsterdam, pp 289–294

    Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 109:340–354

    Google Scholar 

  • Dreibus G, Spettel B, Wänke H (1979) Halogens in meteorites and their primordial abundances. In: Ahrens LH (ed) Origin and Distribution of the Elements. Pergamon Press, Oxford New York, pp 33–38

    Google Scholar 

  • Dungan MA, Ave-Lallemant HG (1977) Formation of small dunite bodies by metasomatic transformation of harzburgite in the Canyon Mountain ophiolite, northeast Oregon. In: Dick HJB (ed) Magma Genesis. Oregon Dept Geol Mineral Res Bull, pp 109–128

  • El Shazly EM, Saleeb GS (1972) Scapolite-cancrinite mineral association in St. John's Island, Egypt. XXIV Internat Geol Congr, Montreal, Sect 14: 192–199

    Google Scholar 

  • El Shazly EM, Saleeb-Roufaiel GS (1979) Genesis of peridotite in St. John's Island, Red Sea, and its relation to the metasomatism of the ultramafic rocks. Egypt J Geol 22: 103–122

    Google Scholar 

  • El Shazly EM, Saleeb-Roufaiel GS, Zaki N (1974) Quaternary basalt in Saint John's Island, Red Sea, Egypt. Egypt J Geol 18: 137–148

    Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poulditis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali Basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30: 79–105

    Google Scholar 

  • Frey FA (1980) The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Trace element evidence. Am J Sci 280-A: 427–449

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38: 129–176

    Google Scholar 

  • Frey FA, Suen CJ, Stockman HW (1985) The Ronda high temperature peridotite: geochemistry and petrogenesis. Geochim Cosmochim Acta 49: 2469–2491

    Google Scholar 

  • George RP (1978) Structural petrology of the Olympus ultramafic complex in Troodos ophiolite, Cyprus. Geol Soc Am Bull 89: 845- 865

    Google Scholar 

  • Girdler RW, Styles P (1974) Two stage Red Sea fluor spreading. Nature 247: 7–11

    Google Scholar 

  • Hess HH (1960) Stillwater igneous complex, Montana: a quantitative mineralogical study. Geol Soc Am Mem 80:230 pp

  • Irving AJ (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim Cosmochim Acta 42: 743–770

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc Lunar Planet Sci Conf 10th: 2031–2050

  • Kruse H (1979) Spectra processing with computer graphics. Proc Am Nucl Soc Top Conf, Mayaguez, Puerto Rico, DOE Conf.-78421: 76–84

  • Kurat G (1991) Geologie und Geochemie der Insel Zabargad (Ägypten, Rotes Meer). Wiss Film (Wien) 42: 134–142

    Google Scholar 

  • Kurat G (1992) Geologie und Geochemie der Insel Zabargad (Ägypten, Rotes Meer). Mitt Österr Mineral Ges 137: 89–98

    Google Scholar 

  • Kurat G, Palme H, Spettel B, Baddenhausen H, Hofmeister H, Palme C, Wänke H (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mande processes. Geochim Cosmochim Acta 44: 45–60

    Google Scholar 

  • Kurat G, Niedermayr G, Prinz M, Brandstätter F (1982a) High temperature peridotite intrusion into an evaporite sequence, Zabargad, Egypt. Terra Cognita 2: 240

    Google Scholar 

  • Kurat G, Niedermayr G, Prinz M (1982b) Peridot von Zabargad, Rotes Meer. Der Aufschluss 33: 169–182

    Google Scholar 

  • Kurat G, Brandstätter F, Palme H, Spettel B, Prinz M, Touret J (1983) Mobilizations in upper mande rocks from Zabargad, Red Sea. Terra Cognita 3: 125

    Google Scholar 

  • Kurat G, Ntaflos T, Brandstätter F, Palme H, Spettel B, Prinz M, Touret J (1984) Metasomatism of the upper mande rocks from Zabargad Island, Red Sea. XXVII Internat. Geol. Congr., Abstracts V, Sect. 10, 11, Moscow: 324–325

  • Kurat G, Ntaflos T, Palme H, Dreibus G, Spettel B, Prinz M, Touret J (1985) Upper mantle vein pyroxenites: evidence for nonmagmatic origin. Terra Cognita 5: 439–440

    Google Scholar 

  • Kurat G, Embey-Isztin A, Kracher A, Scharbert H-G (1991a) The upper mande beneath Kapfenstein and the Transdanubian Volcanic Region, E Austria and W Hungary: a comparison. Mineral Petrol 44: 21–38

    Google Scholar 

  • Kurat G, Ntaflos T, Kerschner H (1991b) Geologie und Geochemie der Insel Zabargad. Eur J Mineral, Beih 3/1: 160

    Google Scholar 

  • Loomis TP, Gottschalk RR (1981) Hydrothermal origin of mafc layers in alpine-type peridotites: evidence from the Seiad Ultramafc Complex, California, USA. Contrib Min Petrol 76: 1–11

    Google Scholar 

  • McKay GA (1986) Crystal/liquid partitioning of REE in basaltic systems: extreme fractionation of REE in olivine. Geochim Cosmochim Acta 50: 69–79

    Google Scholar 

  • Mercier J-CC (1980) Single-pyroxene thermobarometry. Tectonophysics 70: 1–37

    Google Scholar 

  • Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16: 454–487

    Google Scholar 

  • Moon FW (1923) Preliminary geological report on St. John's Island, Red Sea. Geolog Surv Egypt, Cairo, Egypt. 36pp

    Google Scholar 

  • Moon FW (1925) A preliminary note on the rocks of St. Johns Island in the Red Sea. CR XIIIe Congr. geolog. internat. 1922, Viallant-Carmanne, Liege: 1001–1004

  • Nicolas A, Boudier F, Lyberis N, Montigny R, Guennoc P (1985) Zabargad (Saint-John) Island: a key-witness of early rifting in the Red Sea. CR Acad Sc Paris II: 1063–1068

    Google Scholar 

  • Nicolas A, Boudier F, Montigny R (1987) Structure of Zabargad Island and early rifting of the Red Sea. J Geophys Res 92: 461–474

    Google Scholar 

  • Ntaflos T, Brandstätter F, Kurat G (1984) Petrologie der Ultramaftite von Zabargad, Rotes Meer. Fortschr Mineral, Bh 1 62: 174–176

    Google Scholar 

  • Oberli R, Ntaflos T, Meier M, Kurat G (1987) Emplacement age of the peridotites from Zabargad Island (Red Sea): a zircon U-Pb isotope study. Terra Cognita 7: 334

    Google Scholar 

  • Palme H, Nickel KG (1985) Ca/Al ratio and composition of the Earth's upper mande. Geochim Cosmochim Acta 49: 2123–2132

    Google Scholar 

  • Palme H, Suess HE, Zeh HD (1981) Abundances of the elements in the solar system. In: Scheifers K, Voigt HH (eds) Landoldt-Boernstein. Springer, Berlin Heidelberg New York, pp 257–273.

    Google Scholar 

  • Petrini R, Joron JL, Ottonello G, Bonatti E, Seyler M (1988) Basaltic dykes from Zabargad Island, Red Sea: petrology and geochemistry. Tectonophysics 150: 229–248

    Google Scholar 

  • Piccardo GB, Messiga B, Vannucci R (1988) The Zabargad peridotite-pyroxenite association: petrological constraints on its evolution. Tectonophysics 150: 135–162

    Google Scholar 

  • Pott PE (1898) Expedition S. M. Schiff “Pola” in das Rothe Meer Bd. 1 Nördliche Hälfte, Beschreibender Theil. Berichte der Commission für Oceanographische Forschungen K. Hof- und Staatsdruck. Wien 1–18

    Google Scholar 

  • Schiffries CM, Skinner BJ (1987) The Bushveld hydrothermal system: field and petrologic evidence. Am J Sci 287: 566–595

    Google Scholar 

  • Seyler M, Bonatti E (1988) Petrology of a gneiss-amphibolite louver crustal unit from Zabargad Island, Red Sea. Tectonophysics 150: 177–207

    Google Scholar 

  • Spettel B, Palme H, Ionov DA, Kogarko LN (1991) Variations in the iridium content of the upper mande of the Earth. Lunar Planet Sci 22: 1301–1302

    Google Scholar 

  • Stosch H-G (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46: 793–811

    Google Scholar 

  • Stosch H-G, Lugmair GW (1986) Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet Sci Lett 80: 281–298

    Google Scholar 

  • Styles P, Gerdes KD (1983) St. John's Island (Red Sea): a new geophysical model and its implications for the emplacement of ultramafic rocks in fracture zones and at continental margins. Earth Planet Sci Lett 65: 353–368

    Google Scholar 

  • Triulzi AE (1898) Expedition S. M. Schiff “Pola” in das Rothe Meer, nördliche Hälfte. Wissenschaftliche Ergebnisse 11. Relative Schwerebestimmungen. Denkschr K Akad Wiss Wien Math-naturw Kl 65: 131–206

    Google Scholar 

  • Wasson JT (1985) Meteorites. Their Record of Early Solar-System History. WH Freeman, New York, 267pp

    Google Scholar 

  • Wedepohl KH (ed) (1969) Handbook of Geochemistry. Springer, Berlin Heidelberg New York, 6 vols

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62: 129–139

    Google Scholar 

  • Wendlandt R, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69: 409–419

    Google Scholar 

  • Wilshire HG, McGuire AV, Noller JS, Turrin BD (1991) Petrology of louver crustal and upper mande xenoliths from the Cima volcanic field, California. J Petrol 32: 169–200

    Google Scholar 

  • Zipfel J, Palme H, Specht S, Kurat G (1991) Ca-Zonierung in Olivinen des Zabargad Peridotites: Hinweise auf eine langsame Abkühlung. Eur J Mineral, Bh 3/1: 309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Josef Zemann on the occasion of his 70th birthday

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurat, G., Palme, H., Embey-Isztin, A. et al. Petrology and geochemistry of peridotites and associated vein rocks of Zabargad Island, Red Sea, Egypt. Mineralogy and Petrology 48, 309–341 (1993). https://doi.org/10.1007/BF01163106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163106

Keywords

Navigation