Skip to main content
Log in

Biomineralization and the carbon isotope record

Die Bedeutung der Biomineralisation für die Verteilung stabiler Kohlenstoffisotope in Karbonatgesteinen

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record.

Zusammenfassung

Im exogenen Kreislauf können die Bildung von Karbonaten

  1. (i)

    chemisch Ca2++2HCO 3 →CaCO3+CO2+H2O und

  2. (ii)

    biochemisch Ca2++2HCO 3 →Ca(HCO3)2)→CaCO3+H2CO3 gesteuert werden.

Die chemische Bildung (i) führt zu einer Isotopenfraktionierung, wobej, das erzeugte Karbonat um+4 und das freiwerdende CO2 um−4 gegenüber dem Bikarbonat fraktioniert wird. Die biochemische Bildung ist dagegen enzymisch gesteuert, wobei die beteiligte Karbonanhydrase nicht das CO2, sondern H2CO3 als Substrat gebraucht. Entsprechend wird das Isotopensignal des gelösten Karbonats konservativ an das Karbonat bzw. Karbonsäure unfraktioniert weitergegeben, da nur das CO3-Molekül beteiligt ist.

Diese Unterschiede sind bislang bei der Auswertung der13C/12C-Verteilung in Karbonaten so gut wie unberücksichtigt gebheben. In der vorliegenden Arbeit wird versucht, die Kohlenstoffisotopensignale mariner Karbonate unter Berücksichtigung chemischer und enzymischer Prozesse zu deuten. Dabei zeigt sich, daß vom Archaikum bis zum Vendium die Karbonatgeochemie ausschließlich chemisch gesteuert war. Mit dem Einsetzem der Biomineralisation, also der enzymisch-gesteuerten CaCO3-Bildung etwa and der Grenze zwischen Präkambrium/Kambrium, wurde die Karbonatchemie des Ozeans nahezu ausschließlich über die Organismen reguliert. Damit steht gleichzeitig auch das globale CO2-System unter biologischer Kontrolle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur, M. A., Dean, W. E., Schlanger, S. O., 1985: Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in the atmospheric CO2. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (Sundquist, E. T., Broecker, W. S., eds.), pp. 504–529, Washington, D. C.: Amer. Geophys. Union.

    Google Scholar 

  • Degens, E. T., 1976: Molecular mechanisms on carbonate, phosphate and silica deposition in the living cell. Topics in Current Chemistry,64, 3–112.

    Google Scholar 

  • — 1969: Biogeochemistry of stable carbon isotopes. In: Organic Geochemistry (Eglinton, G. Murphy, M. T. J., eds.), pp. 304–329. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Degens, E. T., Kazmierczak, J., Ittekkot, V., 1985: Cellular response to Ca2+ stress and geological implications. Acta Paleontol. Polonica30 (In press).

  • —,Kempe, S., Spitzy, A. 1984: CO2: A biogeochemical portrait. In: Handbook of Environmental Chemistry. (Hutzinger, O. ed.),. pp. 127–215. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Deuser, W. G., Degens, E. T., 1969: O18/O16 and C13/C12 ratios of fossils from the hot brine deep area of the central Red Sea. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea (Degens, E. T., Ross, D. A., eds.), pp. 336–347. New York: Springer.

    Google Scholar 

  • Emrich, K., Ehhalt, D., Vogel, J. C., 1970: Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planet. Sci. Lett.,8, 363–371.

    Google Scholar 

  • Golubic, S. 1973: The relationship, between blue-green algae and carbonate deposits In: The Biology of Blue-Green Algae (Carr, N. G., Whitton, B. A., eds.), pp. 434–472. Oxford: Blackwell

    Google Scholar 

  • Goreau, T. F. 1959: The physiology of skeletal formation in corals I. A. method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull.116, 59–75.

    Google Scholar 

  • Hallstead, L. B., 1969: Are mitochondria directly involved in biological mineralization (the mitochondrion and the origin of bone). Calc. Tiss. Res.3, 103–104.

    Google Scholar 

  • Hutchinson, G. E., 1961: The biologist poses some problems. In: Oceanography (Sears, M., ed.), pp. 85–94, AAAS Publ. 67.

  • Jones, A. R., 1969: Mitochondria, calcification and waste disposal,. Calc. Tiss. Res.3, 363–365.

    Google Scholar 

  • Kazmierczak, J., Ittekkot, V., Degens, E. T., 1985.: Biocalcification through time: Environmental challenge and cellular response. Paläontol. Z.59, 15–33.

    Google Scholar 

  • Kempe, S., Degens, E. T., 1985: An early soda ocean? Chem. Geol.53, 95–108.

    Google Scholar 

  • Koenig, S. H., Brown, R. D., 1972: H2CO3 as substrate for carbonic anhydrase in the dehydration of HCO −13 . Proc. Nat. Acad. Sci., U.S.A.69, 2422–2425.

    Google Scholar 

  • Krampitz, G., Witt, W., 1979: Biochemical aspects of biomineralization. Topics in Current Chemistry78, 57–144.

    Google Scholar 

  • Krumbein, W. E. 1979: Calcification by bacteria and algae. In: Biogeochemical Cycling of Mineral-forming Elements (Trudinger, P. A., Swain D. J., eds.), pp. 47–68. Amsterdam: Elsevier.

    Google Scholar 

  • MacLaren, S. L., 1983: Bolides and biostratigraphy. Geol Soc. Amer. Bull.94, 313–324

    Google Scholar 

  • Magaritz, M., Anderson, R. Y., Holser, W. T., Saltzman, E. S., Garber, J., 1983: Isotope shifts in the Late Permian of the Delaware Basin, Texas precisely timed by varved sediments. Earth and Planet. Sci. Lett.66 111–124.

    Google Scholar 

  • Mook, W. G., Bommerson, J. C., Staverman, W. H., 1974: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planet. Sci. Lett.22, 169–176.

    Google Scholar 

  • Officer, C. B., Drake, C. L., 1983: The Cretacous-Tertiary transition. Science219, 1383–1390.

    Google Scholar 

  • Schidlowski, M., 1982: Content and isotopic composition of reduced carbon in sediments. In: Mineral Deposits and Evolution of the Biosphere (Holland, H. D., Schidlowski, M., eds.), pp. 103–122. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Shackleton, N., Hall, M. A., 1984: Carbon isotope data from Leg 74 sediments. In: Init. Repts. DSDP, 74 (Moore, T. C. Jr, Rabinowitz, P. E., et al., eds.), pp. 613–619. Washington, D.C.: U.S. Govt. Printing Office.

    Google Scholar 

  • Shapiro, R. M., Greenspan, J. S., 1969: Are mitchrondria directly involved in biological mineralization? Calc. Tiss. Res.3, 100–102.

    Google Scholar 

  • Simkiss, K., 1977: Biomineralization and detoxification. Calc. Tiss. Res.,24, 199–200.

    Google Scholar 

  • Spitzy, A., Degens, E. T., 1985: Modelling stable isotope fluctuations through geologic time. Mitt. Geol-Paläontol. Inst. Univ. Hamburg59, 155–166.

    Google Scholar 

  • Stanley, S. M., 1976: Fossil data and the Precambrian-Cambrian evolutionary transition. Amer. J. Sci.276, 56–76.

    Google Scholar 

  • Taylor, H. P., Jr, Frechen, J., Degens, E. T., 1967: Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany, and the Alnö District, Sweden. Geochim. Cosmochim Acta,31, 407–416.

    Google Scholar 

  • Thode, H. G., Shima, M., Rees, C. E., Krishnamurty, K. V., 1965: Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate and metal ions. Canad. J. Chem.43, 582–589.

    Google Scholar 

  • Towe, K. M., Cifelli, R., 1967: Wall ultrastructure in the calcareous,, foraminifera: Crystallographic aspects and a model for calcification. J. Paleontol.41, 742–776.

    Google Scholar 

  • Urist, M. R., 1964: The origin of bone. Discovery25, 13–19.

    Google Scholar 

  • Veizer, J., 1985: Carbonates and ancient oceans: Isotopic and chemical records on time scales of 107–109 years. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (Sundquist, E. T., Broecker, W. S. eds.) pp. 595–601. Washington, D. C.: Amer. Geophys. Union.

    Google Scholar 

  • —,Holser, W. T., Wilgus, C. K., 1980: Correlation, of13C/12C and34S/32S secular variations. Geochim. Cosmochim. Acta44, 579–587.

    Google Scholar 

  • Westbroek, P., de Jong, E. W. eds. 1983: Biomineralization and Biological Metal Accumulation, 533, pp. Dordrecht: D. Reidel

    Google Scholar 

  • Worley, T. R., Moody, J. B., Nance, R. D., 1985: Proterozoic to recent tectonic tuning of biogeochemical cycles. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (Sundquist, E. T., Broecker, W. S., eds.), pp. 561–572. Washington, D. C.:Amer. Geophys. Union.

    Google Scholar 

  • Zajic, J. E., 1969: Microbial Biochemistry, 345 pp. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degens, E.T., Kazmierczak, J. & Ittekkot, V. Biomineralization and the carbon isotope record. TMPM Tschermaks Petr. Mitt. 35, 117–126 (1986). https://doi.org/10.1007/BF01140843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140843

Keywords

Navigation