Skip to main content
Log in

The specialized chalazal endosperm inArabidopsis thaliana andLepidium virginicum (Brassicaceae)

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker H-A, Hueros G, Maitz M, Varotto S, Serna A, Thompson RD (1999) Domains of gene expression in developing endosperm. In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants: molecular and cytological aspects. Springer, Berlin Heidelberg New York Tokyo, pp 361–375

    Google Scholar 

  • Bhatnagar SP, Sawhney V (1981) Endosperm: its morphology, ultrastructure, and histochemistry. Int Rev Cytol 73: 55–102

    Google Scholar 

  • Brown RC, Lemmon BE (1995) Methods in plant immunolight microscopy. Methods Cell Biol 49: 85–107

    Google Scholar 

  • — —, Nguyen H, Olsen O-A (1999) Development of endosperm inArabidopsis thaliana. Sex Plant Reprod 12: 32–42

    Google Scholar 

  • Chopra RN, Seth PN (1977) Some aspects of endosperm development in Cucurbitaceae. Phytomorphology 27: 112–115

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Davis RW, Smith JD, Cobb BG (1990) A light and electron microscope investigation of the transfer cell region of maize caryopsis. Can J Bot 68: 471–479

    Google Scholar 

  • Dute RR, Peterson CM (1992) Early endosperm development in ovules of soybean,Glycine max (L.) Merr. (Fabaceae). Ann Bot 69: 263–271

    Google Scholar 

  • Fox LM (1997) Microscopy 101: polychrome stain for epoxy sections. Microsc Today 97(5): 21

    Google Scholar 

  • Friedman WE (1998) The evolution of double fertilization and endosperm: an “historical” perspective. Sex Plant Reprod 11: 6–16

    Google Scholar 

  • Groot EP, van Caeseele LA (1993) The development of the aleurone layer in canola (Brassica napus). Can J Bot 71: 1193–1201

    Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells”: plant cells with wall ingrowths, specialized in relation to short distance transport of solutes — their occurrence, structure, and development. Protoplasma 68: 107–133

    Google Scholar 

  • Hepler P (1981) The structure of the endoplasmic reticulum as revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110

    Google Scholar 

  • Herr JM Jr (1997) The origin of the ovule. Am J Bot 82: 547–564

    Google Scholar 

  • Keith K, Krami M, Dengler NG, McCourt P (1994)fusca3: a heterochronic mutation affecting late embryo development inArabidopsis. Plant Cell 6: 589–600

    Google Scholar 

  • Linnestad C, Doan DNP, Brown RC, Lemmon BE, Meyer DJ, Jung R, Olsen O-A (1998) Nucellain, a barley homologue of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol 118: 1169–1180

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mansfield SG (1994) Endosperm development. In: Bowman J (ed)Arabidopsis: an atlas of morphology and development. Springer, Berlin Heidelberg New York Tokyo, pp 385–397

    Google Scholar 

  • —, Briarty LG (1990) Development of thc free-nuclear endosperm inArabidopsis thaliana L. Arabidopsis Inf Serv 27: 53–64

    Google Scholar 

  • Nagl W (1992) The polytenic endosperm haustorium ofRhinanthus minor (Scrophulariaceae): functional ultrastructure. Can J Bot 70: 1997–2004

    Google Scholar 

  • Neubauer BF (1971) The development of the achene ofPolygonum pennsyl anicum: embryo, endosperm, and pericarp. Am J Bot 58: 655–664

    Google Scholar 

  • O'Brien TP, McCully E (1969) Plant structure and development: a pictorial and physiological approach. Macmillan, Toronto, Ontario

    Google Scholar 

  • Offler CE, Patrick JW (1993) Pathway of photosynthate transfer in the developing seed ofVicia faba L: a structural assessment of the role of transfer cells in unloading from the seed coat. J Exp Bot 44: 711–724

    Google Scholar 

  • Olsen O-A, Brown RC, Lemmon BE (1995) Pattern and process of wall formation in developing endosperm. BioEssays 17: 803–812

    Google Scholar 

  • Pacini E, Simoncioli C, Cresti M (1975) Ultrastructure of nucellus and endosperm ofDiplotaxis erucoides during embryogenesis. Caryologia 28: 525–538

    Google Scholar 

  • Pickett-Heaps JD, Gunning BES, Brown RC, Lemmon BE, Cleary AL (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell division. Am J Bot 86: 153–172

    Google Scholar 

  • Postek MP, Tucker SC (1976) A new short chemical dehydration method for light microscopy preparations of plant material. Can J Bot 54: 872–875

    Google Scholar 

  • Schnarf K (1914) Beiträge zur Kenntnis der Samenentwicklung einiger europäischerHypericum-Arten. Sitzungsber Akad Wiss Wien Math-naturwiss Kl Abt 1: CXXIII

    Google Scholar 

  • Schneitz K, Hulskamp M, Pruitt RE (1995) Wild-type ovule development inArabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7: 731–749

    Google Scholar 

  • Schulz P, Jensen WA (1971)Capsella embryogenesis: the chalazal proliferating tissue. J Cell Sci 8: 201–227

    Google Scholar 

  • — — (1974)Capsella embryogenesis: the development of the freenuclear endosperm. Protoplasma 80: 183–205

    Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development inArabidopsis thaliana. Development 125: 3329–3341

    Google Scholar 

  • Simoncioli C (1974) Ultrastructural characteristics ofDiplotaxis erucoides (L.) DC. Suspensor. G Bot Ital 108: 175–189

    Google Scholar 

  • Stenar H (1938) Das Endosperm beiHypericum acutum Moench. Bot Notiser 1938: 515–527

    Google Scholar 

  • Swamy BGL (1946) Endosperm inHypericum mysorense Heyne. Ann Bot NS 10: 165–169

    Google Scholar 

  • van Lammeren AAM, Kieft H, Ma F, van Veenendaal WLH (1996) Light microscopical study of endosperm formation inBrassica napus L. Acta Soc Bot Pol 65: 267–272

    Google Scholar 

  • Vijayraghavan MR, Prahabkar K (1984) The endosperm. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 319–376

    Google Scholar 

  • — —, Puri BK (1984) Histochemical, structural and ultrastructural features of endosperm inAlyssum maritimum Lam. Acta Bot Neerl 33: 111–122.

    Google Scholar 

  • Wang HL, Offler CE, Patrick JW (1994) Nucellar projection transfer cells in the developing wheat grain. Protoplasma 182: 39–52

    Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2: 169–174

    Google Scholar 

  • Williams EG (1987) Interspecific hybridization in pasture legumes. In: Janik J (ed) Plant breeding reviews. Van Nostrand and Reinhold, New York, pp 237–305

    Google Scholar 

  • XuHan X (1995) Seed development inPhaseolus ulgaris L.,Populus nigra L., andRanunculus scleratus L. with special reference to the microtubular cytoskeleton. Koninklijke Bibliotheek, Den Haag, the Netherlands

    Google Scholar 

  • Yeung EC, Clutter ME (1979) Embryology ofPhaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot 57: 120–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H., Brown, R.C. & Lemmon, B.E. The specialized chalazal endosperm inArabidopsis thaliana andLepidium virginicum (Brassicaceae). Protoplasma 212, 99–110 (2000). https://doi.org/10.1007/BF01279351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279351

Keywords

Navigation