Skip to main content
Log in

Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes ofLilium longiflorum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A heterogeneous distribution of H+-ATPase was visualized in germinated pollen ofLilium longiflorum using monoclonal antibodies raised against plasma membrane H+-ATPase. Immunolocalization studies of protoplasts and subprotoplasts derived from pollen tubes and sectioned pollen grains and pollen tubes show that H+-ATPases are abundant in the plasma membrane of pollen grains but are absent or sparsely distributed in the plasma membrane of pollen tubes. This polar distribution of H+-ATPases is probably the basis of the endogenous current pattern measured in growing lily pollen and involved in pollen tube tip growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumine

Hepes:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

Mes:

2-(N-morpholino)-ethane sulphonic acid

PBS:

phosphate buffered saline

Pipes:

piperazine-N,N′-bis(2-ethanesulfonic acid)

Tris:

2-amino-2-hydroxymethyl-1,3-propandiol

References

  • Armbruster BL, Weisenseel MH (1983) Ionic currents traverse growing hyphae and sporangia of the mycelial water moldAchlya debariana. Protoplasma 115: 65–69

    Google Scholar 

  • Bittisnich DJ, Williamson RE (1989) Tip-localised H+ fluxes and the applicability of the acid-growth hypothesis to tip-growing cells: control of chloronemal extension inFunaria hygrometrica by auxin and light. Planta 178: 96–102

    Google Scholar 

  • Blatt MR (1991) Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 124: 95–113

    PubMed  Google Scholar 

  • Briskin DP (1990) The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function. Biochim Biophys Acta 1019: 95–105

    Google Scholar 

  • Gordon LGM, Macknight ADC (1991) Contribution of secondary active transport processes to membrane potentials. J Membr Biol 120: 141–154

    PubMed  Google Scholar 

  • Gow NAR, Kropf DL, Harold FM (1984) Growing hyphae ofAchlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J Gen Microbiol 130: 2967–2974

    PubMed  Google Scholar 

  • Harold FM, Caldwell JH (1990) Tips and currents: electrobiology of apical growth. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, London, pp 59–89

    Google Scholar 

  • Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67: 488–492

    PubMed  Google Scholar 

  • Kroh M, Knuiman B (1988) Development of subprotoplasts from in vitro-grown tobacco pollen tubes. Sex Plant Reprod 1: 103–113

    Google Scholar 

  • Kropf D (1986) Electrophysiological properties ofAchlya hyphae: ionic currents studied by intracellular potential recording. J Cell Biol 102: 1209–1216

    PubMed  Google Scholar 

  • Kühtreiber WM, Jaffe LF (1990) Detection of extracellular Ca2+ gradients with a calcium-specific vibrating electrode. J Cell Biol 110: 1565–1573

    PubMed  Google Scholar 

  • Lützelschwab M (1991) Biochemische und immunologische Charakterisierung von Funktionen der Plasmamembran vonCucurbita peo L.: Evidenz für Heterogenität der Plasmamembran. PhD thesis. Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany

    Google Scholar 

  • Nuccitelli R (1978) Ooplasmic segregation and secretion in thePelvetia egg is accompanied by membrane-generated electrical current. Dev Biol 62: 13–33

    PubMed  Google Scholar 

  • Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56: 319–327

    PubMed  Google Scholar 

  • Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody labelling method. Amer J Bot 61: 195–202

    Google Scholar 

  • Racusen RH, Ketchum KA, Cooke TJ (1988) Modification of extracellular electric and ionic gradients preceding the transition from tip growth to isodiametric expansion of the apical cell of the fern gametophyte. Plant Physiol 87: 69–77

    Google Scholar 

  • Reiss HD, Traxel K (1987) Hint of polar distribution in calcium channels under PIXE analysis. Biol Trace Element Res 13: 135–142

    Google Scholar 

  • Sanders D, Slayman CL (1989) Transport at the plasma membrane of plant cells: a review. In: Dainty J, DeMichelis MI, Marre E, Rasi-Caldogno F (eds) Plant membrane transport. Elsevier, Amsterdam, pp 3–11

    Google Scholar 

  • Serrano EE, Zeiger E (1989) Sensory transduction and electrical signalling in guard cells. Plant Physiol 91: 795–799

    Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane H+-ATPase. Annu Rev Plant Physiol Plant Mol Biol 40: 61–94

    Google Scholar 

  • Slone JH, Buckhout TJ (1991) Sucrose-dependent H+ transport in plasma membrane vesicles isolated from sugar beet leaves (Beta vulgaris). Planta 183: 584–589

    Google Scholar 

  • Taiz L (1984) Plant cell expansion: Regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35: 585–657

    Google Scholar 

  • Takeuchi Y, Schmid J, Caldwell JH, Harold FM (1988) Transcellular ion currents and extension ofNeuropora crassa hyphae. J Membr Biol 101: 33–41

    PubMed  Google Scholar 

  • Tanaka J, Kizuma C, Ito M (1987) The isolation and culture of lily pollen protoplasts. Plant Sci 50: 205–211

    Google Scholar 

  • Villalba JM, Lützelschwab M, Serrano R (1991) Immunolocalization of plasma membrane H+-ATPase in maize coleoptiles and enclosed leaves. Planta 185: 458–461

    Google Scholar 

  • Weisenseel MH, Jaffe LF (1976) The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133: 1–7

    Google Scholar 

  • —, Kicherer RM (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 379–399 [Alfert M et al (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • —, Wenisch HH (1980) The membrane potential of growing lily pollen. Z Pflanzenphysiol 99: 313–323

    Google Scholar 

  • —, Dorn A, Jaffe LF (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare). Plant Physiol 64: 512–518

    Google Scholar 

  • —, Nuccitelli R, Jaffe LF (1975) Large currents travers growing pollen tubes. J Cell Biol 66: 556–567

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obermeyer, G., Lützelschwab, M., Heumann, H.G. et al. Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes ofLilium longiflorum . Protoplasma 171, 55–63 (1992). https://doi.org/10.1007/BF01379280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01379280

Keywords

Navigation