Skip to main content
Log in

Lateral hydrodynamic effects of rotating cytoskeletal components as possible determining factors for cytomorphogenesis in plant cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Rotating filaments produce far reaching lateral streams in a thick medium and localized negative pressure when placed adjacent a wall. Freely movable filaments can roll on a wall. Pairs of counterrotating filaments are stabilized. When rotating components of the cytoskeleton generate these lateral hydrodynamic effects many hitherto mysterious features can be explained, including positioning of organelles and morphogenesis of plant cells. It is postulated that MTs and MFs roll laterally to positions of equilibrium, these being, for example, the preprophase band site and the cortical site that controls local thickening of the secondary wall. The orientation of microfibrils in the cell wall may also depend on the lateral effects of rotation. Different streaming patterns can move and shape the nucleus and other organelles and bring them in appropriate positions. Morphogenetic events as septum and lobe formation in desmids could result. Time-dependent reversal of the rotational directions are required for the transformation of the patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Drawert H, Mix M (1962) Zur Funktion des Golgi-Apparates in der Pflanzenzelle. Planta 58: 448–52

    Google Scholar 

  • Emons AMC (1982) Microtubules do not control microfibril orientation in a helicoidal cell wall. Protoplasma 113: 85–87

    Google Scholar 

  • Evert RF, Deshpande BP (1970) An ultrastructural study of cell division in the cambium. Amer J Bot 57: 942–961

    Google Scholar 

  • Foissner I (1985) The rotation model as a basis forNitella filamentdynamics. In: Alia EE, Arena N, Russo MA (eds) Contractile proteins in muscle and non-muscle cell systems. Praeger, New York, pp 213–218

    Google Scholar 

  • —, Jarosch R (1981) The motion mechanics ofNitella filaments (cytoplasmic streaming): their imitation in detail by screw-mechanical models. Cell Motil 1: 371–385

    Google Scholar 

  • — — (1985) The rotation model applied to melano (erythro)phore motility. In: Alia EE, Arena N, Russo MA (eds) Contractile proteins in muscle and non-muscle cell systems. Praeger, New York, pp 219–229

    Google Scholar 

  • Gerrath JF (1968) Studies on the ultrastructure of desmids and its relation to their taxonomy. PhD Thesis, University of British Columbia. Cited after Lacalli (1973)

  • Goto Y, Ueda K (1988) Microfilament bundles of F-actin inSpirogyra observed by fluorescence microscopy. Planta 173: 442–446

    Google Scholar 

  • Gunning BES (1981) Microtubules and cytomorphogenesis in a developing organ: The root primordium ofAzolla pinnata. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 8, pp 302–324]

    Google Scholar 

  • — (1982) The cytokinetic apparatus: Its development and spatial regulation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London New York, pp 229–292

    Google Scholar 

  • —, Hardham HR, Hughes JE (1978) Evidence for initiation of microtubules in discrete regions of the cell cortex inAzolla roottip cells and a hypothesis on the development of cortical arrays of microtubules. Planta 143: 161–179

    Google Scholar 

  • — — (1982) Microtubules. Annu Rev Plant Physiol 33: 651–698

    Google Scholar 

  • Heath IB, Seagull RW (1982) Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 163–182

    Google Scholar 

  • Hepler PK (1981) Morphogenesis of tracheary elements and guard cells. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 8, pp 327–347]

    Google Scholar 

  • Hodge AJ, Rice RV, Mueller R, Adelman Jr WJ (1986) Ordered segmental motion of filopodia in cultured cells. J Cell Biol 103: 282 a, Nr 1058

    Google Scholar 

  • Hogetsu T (1986) Re-formation of microtubules inClosterium ehrenbergii Meneghini after cold-induced depolymerization. Planta 167: 437–443

    Google Scholar 

  • —, Oshima Y (1985) Immunofluorescence microscopy of microtubule arrangement inClosterium aerosum (Schrank) Ehrenberg. Planta 166: 169–175

    Google Scholar 

  • Jaffe LF (1983) Control of development by ionic currents. In: Oplatka A, Balaban M (eds) Biological structures and coupled flows. Academic Press, New York, Balaban ISS, Philadelphia, pp 445–456

    Google Scholar 

  • Jarosch R (1956 a) Aktiv bewegungsfähige Plasmaelemente und Chloroplastenrotation bei Characeen. Anzeiger Math Nat Kl Österr Akad Wiss 6: 58–60

    Google Scholar 

  • — (1956 b) Plasmaströmung und Chloroplastenrotation bei Characeen. Phyton (Argentina) 6: 87–107

    Google Scholar 

  • — (1957) Zur Mechanik der Protoplasmafibrillenbewegung. Biochim Biophys Acta 25: 204–205

    Google Scholar 

  • — (1958) Die Protoplasmafibrillen der Characeen. Protoplasma 50: 93–108

    Google Scholar 

  • — (1960) Die Dynamik im Characeen-Protoplasma. Phyton (Argentina) 15: 43–66

    Google Scholar 

  • — (1963) Grundlagen einer Schrauben-Mechanik des Protoplasmas. Protoplasma (Höfler-Festschrift) 57: 448–500

    Google Scholar 

  • — (1964 a) Screw-mechanical basis of protoplasmic movement. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, New York, pp 599–622

    Google Scholar 

  • — (1964 b) Zur Mechanik schnell rotierender elastischer Schrauben. Biorheology 2: 37–53

    Google Scholar 

  • — (1965) Über Kontakt und Verzweigung der Protein-Schrauben. Österr Bot Z 112: 499–542

    Google Scholar 

  • — (1966) On the behaviour of rotating helices. In: Warren KB (ed) Intracellular transport. Academic Press, New York, pp 275–300

    Google Scholar 

  • — (1968 a) Zur Dynamik feiner Pseudopodien von Hochmoor-Amöben. Protoplasma 65: 363–377

    Google Scholar 

  • — (1968 b) Konfiguration und Hydrodynamik protoplasmatischer Schrauben. Z Naturforsch 23 b: 17–24

    Google Scholar 

  • — (1971) Vergleichende Studien zur amöboiden Beweglichkeit. Protoplasma 72: 79–100

    Google Scholar 

  • — (1979) The torsional movement of tropomyosin and the molecular mechanism of the thin filament motion. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization. University of Tokyo Press, pp 291–319

  • — (1985) The filament rotation model: Molecular and screw-mechanical details. In: Alia EE, Arena N, Russo MA (eds) Contractile proteins in muscle and non-muscle cell systems. Praeger, New York, pp 239–251

    Google Scholar 

  • — (1986 a) A model for the molecular basis of contractility and sliding as demonstrated by helix models. Cell Motil Cytoskeleton 6: 229–236

    Google Scholar 

  • — (1986 b) The mechanical behaviour of doublet microtubules simulated by helical models. Cell Motil Cytoskeleton 6: 209–216

    Google Scholar 

  • — (1986 c) Mechanics and hydrodynamics of rotating filaments and microtubules. In: Reif W-E (ed) Symposium on cellular mechanics. Universität Stuttgart und Tübingen (Arbeitshefte des Sonderforschungsbereiches 230 Heft 18, Natürliche Konstruktionen u Leichtbau in Architektur und Natur, pp 37–42)

  • — (1987 a) Screw-mechanical models for the action of actin- and tubulin-containing filaments. In: Wohlfarth-Bottermann KE (ed) Nature and function of cytoskeletal proteins in motility and transport. Progr Zool 34: 231–249

  • — (1987 b) Mechanics and hydrodynamics of rotating filaments. In: Bereiter-Hahn J, Anderson OR, Reif W-E (eds) Cytomechanics. Springer, Berlin Heidelberg New York Tokyo, pp 54–75

    Google Scholar 

  • — (1988) Screw-mechanical models related to cytoplasmic streaming. Protoplasma [Suppl 1]: 15–26

    Google Scholar 

  • — (1989) Lateral hydrodynamic effects of rotating filaments. Plant Syst Evol 164: 285–322

    Google Scholar 

  • —, Foissner I (1982) A rotation model for microtubule and filament sliding. Eur J Cell Biol 26: 295–302

    Google Scholar 

  • —, Kiermayer O (1962) Die Formdifferenzierung vonMicrasterias-Zellen nach lokaler Lichteinwirkung. Planta 58: 95–112

    Google Scholar 

  • Kallio P (1951) The significance of nuclear quantity in the genusMicrasterias. Ann Bot Soc Zool Bot Fenn Vanamo 24: 1–122

    Google Scholar 

  • —, Lethonen J (1981) Nuclear control of morphogenesis inMicrasterias. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 8, pp 191–213]

    Google Scholar 

  • Kiermayer O (1964) Untersuchungen über die Morphogenese und Zellwandbildung beiMicrasterias denticulata Breb. Protoplasma 59: 382–420

    Google Scholar 

  • — (1965)Micrasterias denticulata (Desmidiaceae) — Morphogenese bei reduziertem Turgor. Institut für Wissenschaftlichen Film, Göttingen, Film E 869

    Google Scholar 

  • — (1967) Das Septum-Initialmuster vonMicrasterias denticulata und seine Bildung. Protoplasma 64: 481–184

    Google Scholar 

  • — (1968) The distribution of microtubules in differentiating cells ofMicrasterias denticulata Breb. Planta 83: 223–236

    Google Scholar 

  • — (1970) Causal aspects of Cytomorphogenesis inMicrasterias. Ann NY Acad Sci 175: 686–701

    Google Scholar 

  • — (1973) Feinstrukturelle Grundlagen der Zytomorphogenese. Ber Dtsch Bot Ges 86: 287–291

    Google Scholar 

  • — (1981) Cytoplasmic basis of morphogenesis inMicrasterias. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 8, pp 147–189]

    Google Scholar 

  • —, Jarosch R (1962) Die Formbildung vonMicrasterias rotata Ralfs und ihre experimentelle Beeinflussung. Protoplasma 54: 382–420

    Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1988) Interrelation between the spatial distribution of actin filaments and microtubules during the differentiation of tracheary elements in culturedZinnia cells. Protoplasma 143: 29–37

    Google Scholar 

  • Lacalli TC (1973) Cytokinesis inMicrasterias rotata. Problems of directed primary wall deposition. Protoplasma 78: 433–442

    Google Scholar 

  • —, Harrison LG (1987) Turing's model and branching tip growth: relation of time and spatial scales in morphogenesis, with application toMicrasterias. Can J Bot 65: 1308–1319

    Google Scholar 

  • Lethonen J (1983) Action of cytochalasin B on cytoplasmic streaming systems and morphogenesis inMicrasterias torreyi (Conjugatophyceae). Nord J Bot 3: 521–531

    Google Scholar 

  • Lloyd CW (1987) The plant cytoskeleton: The impact of fluorescence microscopy. Annu Rev Plant Physiol 38: 119–139

    Google Scholar 

  • —, Barlow PW (1982) The coordination of cell division and elongation: the role of the cytoskeleton. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 203–228

    Google Scholar 

  • —, Seagull W (1985) A new spring for plant cell biology: microtubules as dynamic helices. Trends Biochem Sci 10: 476–478

    Google Scholar 

  • Meindl U (1982) Local accumulations of membrane associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence. Protoplasma 110: 143–146

    Google Scholar 

  • — (1985) Experimental and ultrastructural studies on cell shape formation in the defect mutant cellMicrasterias thomasiana f.uniradiata. Protoplasma 129: 74–87

    Google Scholar 

  • — (1986) Autonomous circular and radial motions of the nucleus inPleurenterium tumidum and their relation to cytoskeletal elements and the plasma membrane. Protoplasma 135: 50–66

    Google Scholar 

  • Mussill M, Jarosch R (1972) Bacterial flagella rotate and do not contract. Protoplasma 75: 465–469

    Google Scholar 

  • Oster GF (1983) Mechanochemistry and morphogenesis. In: Oplatka A, Balaban M (eds) Biological structures and coupled flows. Academic Press, New York, Balaban ISS, Philadelphia, pp 417–443

    Google Scholar 

  • Paschal BM, King SM, Moss AG, Collins CA, Vallee RB, Witman BB (1987) Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature 330: 672–674

    Google Scholar 

  • Pickett-Heaps JD (1972) Cell division inCosmarium botrytis. J Phycol 8: 343–360

    Google Scholar 

  • —, Fowke LC (1970) Mitosis, cytokinesis, and cell elongation in the desmidClosterium littorale. J Phycol 6: 189–215

    Google Scholar 

  • Purcell E (1977) Life at low Reynolds number. Am J Phys 45: 3–11

    Google Scholar 

  • Roberts IN, Lloyd CW, Roberts K (1986) Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta 164: 439–447

    Google Scholar 

  • Schnepf E (1973) Mikrotubulus-Anordnung und -Umordnung, Wandbildung und Zellmorphogenese in jungenSphagnum-Blättchen. Protoplasma 78: 145–173

    Google Scholar 

  • — (1974) Microtubules and cell wall formation. Portugal Acta Biol A 14: 451–461

    Google Scholar 

  • — (1986) Cell polarity. Annu Rev Plant Physiol 37: 23–47

    Google Scholar 

  • —, Stein U, Deichgräber G (1978) Structure, function and development of the peristome of the moss,Rhacopilum tomentosum, with special reference to the problem of microfibril orientation by microtubules. Protoplasma 79: 221–240

    Google Scholar 

  • Schulz D, Jarosch R (1980) Rotating microtubules as a basis for anaphase spindle elongation in diatoms. Eur J Cell Biol 20: 249–253

    Google Scholar 

  • Seagull RW (1983) The role of the cytoskeleton during oriented microfibril deposition. I. Elucidation of the possible interaction between microtubules and cellulose synthetic complexes. J Ultrastruct Res 83: 168–175

    Google Scholar 

  • Stebbings H, Sharma KK (1989) “Corkscrewing”, as evidence for force generation within a detergent-extracted microtubule translocation system from insect ovaries. J Cell Sci 92: 21–27

    Google Scholar 

  • Tippit DH, Pickett-Heaps JD (1974) Experimental investigations into morphogenesis inMicrasterias. Protoplasma 81: 271–296

    Google Scholar 

  • Traas JA, Braat P, Derksen JW (1984) Change in microtubule arrays during the differentiation of cortical root cells ofRaphanus sativus. Eur J Cell Biol 34: 229–238

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond [Biol] 237: 37–72

    Google Scholar 

  • Ueda K, Noguchi T (1988) Microfilament bundles of F-actin and cytomorphogenesis in the green algaMicrasterias crux-melitensis. Eur J Cell Biol 46: 61–67

    Google Scholar 

  • Vale RD, Toyoshima YY (1988) Rotation and translocation of microtubules in vitro by dyneins fromTetrahymena cilia. Cell 52: 459–469

    Google Scholar 

  • —, Toyoshima YY, Tang WJY, Gibbons IR (1988) Dynein-induced microtubule movement in vitro. Cell Motil Cytoskeleton 11: 194

    Google Scholar 

  • Vian B, Roland J-C (1987) The helicoidal cell wall as a time register. New Phytol 105: 345–357

    Google Scholar 

  • Waris H (1950) Cytophysiological studies onMicrasterias II. The cytoplasmic framework and its mutation. Physiol Plant 3: 236–246

    Google Scholar 

  • Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. 1. Preprophase band development and concomitant appearance of nuclear envelopeassociated tubulin. J Cell Biol 97: 235–243

    Google Scholar 

  • Wolpert L (1983) The development of pattern at the cellular level. In: Oplatka A, Balaban M (eds) Biological structures and coupled flows. Academic Press, New York, Balaban ISS, Philadelphia, pp 473–482

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of my friend and fellow student Oswald Kiermayer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarosch, R. Lateral hydrodynamic effects of rotating cytoskeletal components as possible determining factors for cytomorphogenesis in plant cells. Protoplasma 157, 38–51 (1990). https://doi.org/10.1007/BF01322637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322637

Keywords

Navigation