Skip to main content
Log in

Occurrence and distribution of filipin-sterol complexes in chloroplast envelope membranes of algae and higher plants as visualized by freeze-fracture

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The occurrence and planar distribution of 3-β-hydroxysterols in chloroplast envelope membranes of different algae and higher plants has been studied with the freeze-fracture technique using the polyene antibiotic filipin as cytochemical marker. The inner chloroplast envelope membrane in all organisms studied is devoid of filipin-sterol complexes. The outer chloroplast envelope membranes of isolated higher plant chloroplasts (spinach, pea) and of chloroplasts of the mossPolytrichum piliferum are lacking filipin-sterol complexes, thus indicating a very low concentration of 3-β-hydroxysterols in chloroplast envelope membranes of higher plants. In contrast filipin-sterol complexes are abundant in the outer chloroplast envelope membrane of the flagellatesChlamydomonas reinhardii, Cryptomonas erosa, andEuglena gracilis. The chloroplast-ER surrounding the plastid ofCryptomonas erosa also exhibits filipin-sterol complexes. Functional and phylogenetic aspects of these observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bittman, R., 1978: Sterol-polyene antibiotic complexation: probe of membrane structure. Lipids13, 686–691.

    Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N. B., Karnovsky, M. J., Moor, H., Mühlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L. A., Steere, R. L., Weinstein, R. S., 1975: Freeze-etching nomenclature. Science190, 54–56.

    Google Scholar 

  • Carbonero, P., Torres, J. V., Garcia-Olmedo, F., 1975: Effects of n-butanol and filipin on membrane permeability of developing wheat endosperms with different sterol phenotypes. FEBS Lett.56, 198–201.

    Google Scholar 

  • Demel, R. A., De Kruyff, B., 1976: The function of sterols in membranes. Biochim. biophys. Acta457, 109–132.

    Google Scholar 

  • Dodge, J. D., 1979: The Phytoflagellates: fine structure and phylogeny. In: Biochemistry and Physiology of Protozoa, Vol. I (Levandowsky, M., Hutner, S. H., eds.), pp. 7–57. New York: Academic Press.

    Google Scholar 

  • Douce, R., Joyard, J., 1979: Structure and function of the plastid envelope. Adv. Botanical Res.7, 2–116.

    Google Scholar 

  • Edwards, G. E., Robinson, S. P., Tyler, N. J. C., Walker, D. A., 1978: Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat. Plant Physiol.62, 313–319.

    Google Scholar 

  • Eichenberger, W., Menke, W., 1966: Sterole in Blättern und Chloroplasten. Z. Naturforsch.21 b, 859–867.

    Google Scholar 

  • Elias, P. M., Friend, D. S., Goerke, J., 1979: Membrane sterol heterogeneity. Freezefracture detection with saponins and filipin. J. Histochem. Cytochem.27, 1247–1260.

    Google Scholar 

  • Gibbs, S. P., 1978: The chloroplasts ofEuglena may have evolved from symbiotic green algae. Canad. J. Bot.56, 2883–2889.

    Google Scholar 

  • Grunwald, C., 1980: Steroids. In: Secondary Plant Products. Encyclopedia of Plant Physiology, New Series, Vol. 8 (Bell, E. A., Charlwood, B. V., eds.), pp. 221–256. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Kemp, R. J., Mercer, E. I., 1968: Studies on the sterols and sterol esters of the intracellular organelles of maize shoots. Biochem. J.110, 119–125.

    Google Scholar 

  • Kies, L., 1967: Über Zellteilung und Zygotenbildung beiRoya obtusa (Bréb.) West et West. Mitt. Staatsinst. Allg. Bot. Hamburg12, 35–42.

    Google Scholar 

  • Kinsky, S. C., 1970: Antibiotic interaction with model membranes. Ann. Rev. Pharmacol.10, 119–142.

    Google Scholar 

  • —,Luse, S. A., Sopf, D., Van Deenen, L. L. M., Haxby, J., 1967: Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: Electron microscopic observations. Biochim. biophys. Acta135, 844.

    Google Scholar 

  • Kitajima, Y., Sekiya, T., Nozawa, Y., 1976: Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin, and amphotericin B in the plasma membrane ofEpidermophyton, Saccharomyces and red blood cells. A proposal of models for polyene-ergosterol complex-induced membrane lesions. Biochim. biophys. Acta455, 452–465.

    Google Scholar 

  • Lefort-Tran, M., Pouphile, M., Freyssinet, G., Pineau, B., 1980: Signification structurale et fonctionnelle des enveloppes chloroplastiques d'Euglena: Etude immunocytologique et en cryofracture. J. Ultrastruct. Res.73, 44–63.

    Google Scholar 

  • Lilley, R. McC., Walker, D. A., 1974: The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochim. biophys. Acta368, 269–278.

    Google Scholar 

  • Melkonian, M., Robenek, H., 1979: The eyespot of the flagellateTetraselmis cordiformis Stein (Chlorophyceae): Structural specialization of the outer chloroplast membrane and its possible significance in phototaxis of green algae. Protoplasma100, 183–197.

    Google Scholar 

  • — —, 1980: Eyespot membranes ofChlamydomonas reinhardii: a freeze-fracture study. J. Ultrastruct. Res.72, 74–86.

    Google Scholar 

  • Montesano, R., Perrelet, A., Vasalli, P., Orci, L., 1979: Absence of filipin-sterol complexes from large coated pits on the surface of cultured cells. Proc. nat. Acad. Sci. U.S.A.76, 6391–6395.

    Google Scholar 

  • Mudd, J. B., Kleinschmidt, M. G., 1970: Effect of filipin on the permeability of red beet and potato tuber discs. Plant Physiol.45, 517–518.

    Google Scholar 

  • Nakajima, Y., Bridgeman, P. C., 1981: Absence of filipin-sterol complexes from membranes of active zones and acetylcholine receptor aggregates at frog neuromuscular junctions. J. Cell Biol.88, 453–458.

    Google Scholar 

  • Poincelot, R. P., 1973: Isolation and lipid composition of spinach chloroplast envelope membranes. Arch. Biochem. Biophys.159, 134–142.

    Google Scholar 

  • —, 1976: Lipid and fatty acid composition of chloroplast envelope membranes from species with differing net photosynthesis. Plant Physiol.58, 595–598.

    Google Scholar 

  • Priestley, D. A., Woolhouse, H. W., 1980: The chloroplast envelope ofPhaseolus vulgaris L. J. exp. Bot.31, 437–447.

    Google Scholar 

  • Robenek, H.,Melkonian, M., 1981: Sterol-deficient domains correlate with intramembrane particle arrays in the plasma membrane ofChlamydomonas reinhardii. Eur. J. Cell Biol. (in press).

  • Robinson, J. M., Karnovsky, M. J., 1980: Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J. Histochem. Cytochem.28, 161–168.

    Google Scholar 

  • Steup, M., Schächtele, C., Latzko, E., 1980: Purification of a non-chloroplastic α-glucan phosphorylase from spinach leaves. Planta148, 168–173.

    Google Scholar 

  • Tillack, T. W., Kinsky, S. C., 1973: A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim. biophys. Acta323, 43–54.

    Google Scholar 

  • Walker, D. A., 1976: Plastids and intracellular transport. In: Transport in Plants III. Encyclopedia of Plant Physiology, New Series, Vol. 3 (Stocking, C. R., Heber, U., eds.), pp. 85–136. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Medizinische Cytobiologie, Westfälische Wilhelms-Universität, Westring 3, D-4400 Münster, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkonian, M., Robenek, H. & Steup, M. Occurrence and distribution of filipin-sterol complexes in chloroplast envelope membranes of algae and higher plants as visualized by freeze-fracture. Protoplasma 109, 349–358 (1981). https://doi.org/10.1007/BF01287452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287452

Keywords

Navigation