Skip to main content
Log in

Thermomechanische Eigenschaften eines Systems harter Kugeln mit temperaturabhängigem, effektivem Durchmesser

Thermomechanical properties of a hard sphere fluid with temperature dependent effective hard sphere diameter

  • Anorganische, Struktur- und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Equations for the isobaric coefficient of thermal expansion α p , thermal pressure coefficient γ v , and isothermal compressibility β T of a hard sphere fluid are obtained in terms of the respective liquid density, effective hard sphere diameter σ and its temperature dependencel=(d σ/dT)/σ with the aid of the equation of state for a hard sphere fluid due toCarnahan andStarling. In addition, the temperature dependence of the thermal pressure coefficient is calculated, the results being in good qualitative accord with experiment. Differences between calculated and observed values are discussed and several derived quantities (starting with γ v ) are calculated. Specifically, the volume dependence of the molar heat capacity at constant volumeC V , a property which is not easily accessible experimentally, is determined; agreement with published values is quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. M. S. Wertheim, Phys. Rev. Lett.10, 321 (1963);E. Thiele, J. Chem. Phys.39, 474 (1963);C. J. Throop undR. H. Bearman, J. Chem. Phys.42, 2408 (1965).

    Google Scholar 

  2. J. D. Bernal undS. V. King, in: Physics of Simple Liquids (H. N. V. Temperly, J. S. Rowlinson undG. S. Rushbrook, Hrsg.). Amsterdam: North-Holland. 1968;G. D. Scott, Nature194, 956 (1962).

    Google Scholar 

  3. M. N. Rosenbluth undA. W. Rosenbluth, J. Chem. Phys.22, 881 (1954).

    Google Scholar 

  4. H. C. Longuet-Higgins undB. Widom, Mol. Phys.8, 549 (1964).

    Google Scholar 

  5. E. A. Guggenheim, Mol. Phys.9, 43, 199 (1965).

    Google Scholar 

  6. B. Widom, in: Study week on molecular forces, Pontif. Accad. Sci. Scr. Varia. Amsterdam: North-Holland. 1967.

    Google Scholar 

  7. F. Kohler, The Liquid State. Weinheim: Verlag Chemie. 1972.

    Google Scholar 

  8. F. Kohler, Adv. Mol. Relaxation Processes3, 297 (1972).

    Google Scholar 

  9. S. E. Wood, O. Sandus undS. Weissman, J. Amer. Chem. Soc.79, 1777 (1957).

    Google Scholar 

  10. N. F. Carnahan undK. E. Starling, J. Chem. Phys.51, 635 (1969).

    Google Scholar 

  11. N. F. Carnahan undK. E. Starling, J. Chem. Phys.53, 600 (1970).

    Google Scholar 

  12. E. Wilhelm, J. Chem. Phys., im Druck.

  13. H. Reiss, Adv. Chem. Phys.9, 1 (1965).

    Google Scholar 

  14. E. Wilhelm, J. Chem. Phys.58, 3558 (1973).

    Google Scholar 

  15. E. Wilhelm undR. Battino, J. Chem. Phys.58, 3561 (1973).

    Google Scholar 

  16. J. P. O'Connell undJ. M. Prausnitz, in: Applied Thermodynamics (D. E. Gushee, Hrsg.). Washington, D.C.: American Chemical Society. 1968.

    Google Scholar 

  17. E. Wilhelm undF. Kohler, Van der Waals Centennial Conference on Statistical Mechanics, Amsterdam, 27. bis 31. August 1973.

  18. E. Wilhelm undF. Kohler, in Vorbereitung.

  19. J. S. Rowlinson. Liquids and Liquid Mixtures. London: Butterworths. 1969.

    Google Scholar 

  20. E. Wilhelm undR. Battino, J. Chem. Phys.55, 4012 (1971).

    Google Scholar 

  21. E. Wilhelm undR. Battino, J. Chem. Thermodynamics3, 379 (1971).

    Google Scholar 

  22. R. Battino, F. D. Evans, W. F. Danforth undE. Wilhelm, J. Chem. Thermodynamics3, 743 (1971).

    Google Scholar 

  23. E. Wilhelm undR. Battino, J. Chem. Thermodynamics3, 761 (1971).

    Google Scholar 

  24. E. W. Wilhelm undR. Battino, J. Chem. Thermodynamics5, 117 (1973).

    Google Scholar 

  25. L. R. Field, E. Wilhelm undR. Battino, J. Chem. Thermodynamics, im Druck; teilweise vorgetragen bei 3rd Internat. Conference on Chemical Thermodynamics, Baden bei Wien, 3. bis 7. September 1973.

  26. J. O. Hirschfelder, C. F. Curtiss undR. B. Bird, Molecular Theory of Gases and Liquids. New York: Wiley. 1966.

    Google Scholar 

  27. E. Wilhelm undR. Battino, J. Chem. Phys.56, 563 (1972).

    Google Scholar 

  28. Th. Dorfmüller, Ber. Bunsenges. physikalische Chemie77, 317 (1973).

    Google Scholar 

  29. R. E. Gibson undJ. F. Kincaid, J. Amer. Chem. Soc.60, 511 (1938);R. E. Gibson undO. H. Loeffler, J. Amer. Chem. Soc.61, 2515 und 2877 (1939);63, 898 (1941); J. Phys. Chem.43, 207 (1939).

    Google Scholar 

  30. U. Bianchi, G. Agabio undA. Torturro, J. Phys. Chem.69, 4392 (1965).

    Google Scholar 

  31. E. Wilhelm, R. Schano, G. Becker, G. H. Findenegg undF. Kohler, Trans. Faraday Soc.65, 1443 (1969).

    Google Scholar 

  32. E. Wilhelm, E. Rott undF. Kohler, Proc. 1st Internat. Conf. Calorimetry and Thermodynamics, Warschau, 31. 8. bis 4. 9. 1969.

  33. M. Zettler, H. Sackmann undE. Wilhelm, in Vorbereitung.

  34. R. J. Ritchie, Jr., J. Chem. Phys.46, 618 (1967).

    Google Scholar 

  35. E. B. Smith undJ. H. Hildebrand, J. Chem. Phys.31, 145 (1959).

    Google Scholar 

  36. J. H. Hildebrand undR. L. Scott, The Solubility of Nonelectrolytes. New York: Reinhold. 1950.

    Google Scholar 

  37. H. Benninga undR. L. Scott, J. Chem. Phys.23, 1911 (1955).

    Google Scholar 

  38. A. F. M. Barton, J. Chem. Educ.48, 156 (1971).

    Google Scholar 

  39. M. O. Bryant undG. O. Jones, Proc. Phys. Soc. Lond.B 66, 421 (1953).

    Google Scholar 

  40. J. A. Barker undD. Henderson, J. Chem. Phys.47, 4714 (1967).

    Google Scholar 

  41. E. Wilhelm, unveröffentlichte Ergebnisse.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 4 Abbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, E. Thermomechanische Eigenschaften eines Systems harter Kugeln mit temperaturabhängigem, effektivem Durchmesser. Monatshefte für Chemie 105, 291–301 (1974). https://doi.org/10.1007/BF00907375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00907375

Navigation