Skip to main content
Log in

Spectral analysis of climatological time series: On the performance of periodogram, non-integer and maximum entropy methods

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Three independent techniques used in spectral analysis of time series, the conventional periodogram, the maximum entropy spectral analysis and the non-integer method, are applied to a drought index time series and the results are compared. The results reveal that in general the three approaches give similar estimates, especially in the high frequency domain.

The main drawback of the periodogram method is its poor frequency resolution, especially in case of short records. Consequently, while the position of the sinewave frequencies computed by the periodogram seems accurate, the peaks are broad mainly because of the limited length of the data sample. The maximum entropy spectral analysis on the other hand, gives better frequency resolution than either the periodogram or the non-integer method. This method is, however, sensitive to the number of terms of the filter and this has a great influence on the quality of the spectrum.

The non-integer spectra are comparable to higher order maximum entropy spectra. However, because the lowest frequency at which the non-integer spectra can be estimated is the inverse of the length of record, their spectra (for short records) may not be as reliable as those resolved by the maximum entropy spectral analysis in the low frequency domain.

Overall, it is suggested that the maximum entropy spectral analysis is preferable to either the periodogram or the noninteger method when one deals with short climatological time series. A good practice will be to compare the results of the maximum entropy with those of the non-integer method in order to strengthen inferences about the nature of periodicity in the analysed climatological time series.

Zusammenfassung

Drei unabhängige Techniken werden in Spektralanalysen von Zeitreihen verwendet: Die konventionelle Periodogramm-Methode, die Maximalentropie-Spektralanalyse und die Non-Integer-Methode werden auf Zeitserien des Trockenheits-Index angewandt und die Resultate verglichen. Diese Resultate zeigen, daß die drei Verfahren grundsätzlich zu vergleichbaren Ergebnissen führen, v.a. im Hochfrequenz-Bereich.

Der wesentliche Nachteil der Periodogramm-Methode ist ihre Frequenzungenauigkeit, besonders im Fall kurzer Aufzeichnungszeiträume. Daraus folgt, daß die im Periodogramm ausgewiesenen Positionen der Sinuskurven-Frequenzen genau zu stimmen scheinen, die Spitzen aber ungenau bleiben, v. a. auf Grund begrenzter Datenerhebungen.

Die Maximalentropie-Spektralanalyse wiederum weist höhere Frequenzgenauigkeit als die beiden anderen Methoden auf, reagiert jedoch äußerst sensibel auf die Anzahl der Filterterme wodurch die Qualität der Spektren stark beeinflußt wird.

Die Non-Integer-Spektren sind den Maximalentropie-Spektren höherer Ordnung vergleichbar. Da jedoch die niedrigste Frequenz, die auf den Non-Integer-Spektren gemessen werden kann, reziprok zur Aufzeichnungsdauer ist, sind diese Spektren (bei kurzer Aufzeichnungsdauer) im Niederfrequenzbereich nicht so zuverlässig wie jene der Maximalentropie-Spektralanalysen.

Daraus ergibt sich, daß bei Vorliegen kurzer klimatologischer Zeitserien der Maximalentropie-Spektralanalyse der Vorzug vor den beiden anderen Methoden zu geben ist. Ein Vergleich der Ergebnisse der Maximalentropie mit jenen der Non-Integer-Methode scheint empfehlenswert, da dies verstärkt Rückschlüsse auf die Art der Periodiziät in den untersuchten klimatologischen Zeitreihen erlaubt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H., 1969: Power spectrum through autoregressive model fitting.Ann. Inst. Stat. Math. 21, 407–419.

    Google Scholar 

  • Akaike, H., 1974: A new look at the statistical model identification.IEEE. Trans. Autom. Contr. AC-19, 716–723.

    Google Scholar 

  • Anderson, N., 1974: On the calculation of filter coefficients for maximum entropy spectral analysis.Geophysics 39, 69–72.

    Google Scholar 

  • Baggeror, A. B., 1976: Confidence intervals for maximum entropy spectral estimates. In:Aspects of Signal Processing Tacconi, G. (ed.). Dordrecht: D. Reidel Publishing Company, 617–630.

    Google Scholar 

  • Barrodale, I., Erickson, R. E., 1980: Algorithm for leastsquares linear prediction and maximum entropy spectral analysis—Part I: Theory and Part II: FORTRAN PROGRAM.Geophysics 45, 420–446.

    Google Scholar 

  • Berryman, J. G., 1978: Choice of operator length for maximum entropy spectral analysis.Geophysics 43, 1384–1391.

    Google Scholar 

  • Bhalme, H. N., Mooley, D. A., 1980: Large-scale drought/floods and monsoon circulation.Mon. Wea. Rev. 108, 1197–1211.

    Google Scholar 

  • Blackman, R. B., Tukey, J. W., 1959:The Measurement of Power Spectra from the Point of View of Communication Engineering. New York: Dover Publications, 190 pp.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., 1976:Time Series Analysis Forecasting and Control. Rev. Ed. San Francisco: Holden Day, 575 pp.

    Google Scholar 

  • Burg, J. P., 1967: Maximum entropy spectral analysis. Paper presented at the 37th Annual Int. Meeting Soc. of Explor. Geophy. Oklahoma City.

  • Chen, W. Y., Stegen, G. R., 1974: Experiments with maximum entropy power spectra of sinusoids.J. Geophys. Res. 79, 3019–3022.

    Google Scholar 

  • Childers, D. G., 1978:Modern Spectrum Analysis. New York: IEEE Press. 334 pp.

    Google Scholar 

  • Courtillot, V., Le Mouel, J. L., Mayand, P. N., 1977: Maximum entropy spectral analysis of the geomagnetic activity index AA over a 107-year interval.J. Geophys. Res. 82, 1641–2649.

    Google Scholar 

  • Fleer, H., 1981: Large-Scale tropical rainfall anomalies.Bonner Met. Abhndl., 26, 114 pp.

    Google Scholar 

  • Fourgere, P. F., Zawalick, E. J., Radoski, H. E., 1976: Spontaneous line splitting in maximum entropy power spectrum analysis.Phys. Earth Planet Int. 12, 201–207.

    Google Scholar 

  • Gilman, D. L., Fuglister, F. J., Michell, J. M., Jr., 1963: On the power spectrum of red noise.J. Atmos. Sci. 20, 182–184.

    Google Scholar 

  • Goers, J. S., Koscielny, A. J., 1977: Monte Carlo estimates of confidence intervals for maximum entropy method. 5th Conf. on Prob. and Stat. in Atmospheric Sciences. 297–302.

  • Gottman, J. M., 1981:Time-Series Analysis—A Comprehensive Introduction for Social Scientists. London: Cambridge Univ. Press, 400 pp.

    Google Scholar 

  • Gray, H. L., Houston, A. G., Morgan, F. W., 1978: On G-Spectra estimation. In:Applied Time Series Analysis Findley, I. D. G. (ed.). New York: Academic Press, 39–138.

    Google Scholar 

  • Haykin, S., Kesler, S., 1979: Prediction-error filtering and maximum entropy spectral estimation. In:Non-Linear Methods of Spectral Analysis Haykin, S. (ed.). New York: Springer-Verlag, 9–72.

    Google Scholar 

  • Jaynes, E. T., 1968: Prior probabilities.IEEE Trans. System Sci. Cybernetics. SSC-4, 227–241.

    Google Scholar 

  • Jones, E. T., 1965: A reappraisal of the periodogram in spectral analysis.Technometrics 7, 531–542.

    Google Scholar 

  • Kane, R. P., 1979: Maximum entropy spectral analysis of some artifical samples.J. Geophys. Res. 84, 965–966.

    Google Scholar 

  • Kashyap, R. L., 1977: A Bayesian comparison of different classes of dynamic models using empirical data:IEEE Trans. Automatic Control AC-22, 715–727.

    Google Scholar 

  • Katz, R. W., Skaggs, R. H., 1981: On the use of autoregressive-moving average processes to model meteorological time series.Mon. Wea. Rev. 109, 479–484.

    Google Scholar 

  • Kaveh, M., Cooper, O. R., 1976: An empirical investigation of the properties of the autoregressive spectral estimator.IEEE Trans. Inform. Theory IT-22, 313–323.

    Google Scholar 

  • Kay, S. M., Marple, S. L., 1981: Spectrum analysis—A modern perspective.IEEE Proc. 69, 1380–1419.

    Google Scholar 

  • Kirk, B. L., Rust, B. W., Van Winkle, W., 1979:Time Series Analysis by the Maximum Entropy. Oak Ridge: National Lab. Pub. No. 1220, 206 pp.

  • Kromer, R. E., 1969:Asymptotic Properties of the Autoregressive Spectral Estimator. Tech. Rep. 13 Dept. of Statistics. Standford: Standford Univ., 188 pp.

    Google Scholar 

  • Lacoss, R. T., 1971: Data adaptive spectral analysis methods.Geophysics. 36, 661–675.

    Google Scholar 

  • Lacoss, R. T., 1976: Autoregressive and maximum likelihood spectral analysis methods. In:Aspects of Signal Processing: Tacconi, G. (ed.). Dordrecht: D. Riedel Publishing Company, 591–615.

    Google Scholar 

  • Livezey, R. E., Chen, W. Y., 1983: Statistical field significance and its determination by Monte Carlo techniques.Mon. Wea. Rev. 111, 46–59.

    Google Scholar 

  • Marple, L., 1980: A new autoregressive spectrum analysis algorithm.IEEE Trans. Acoust. Speech Signal Proc. ASSP-28, 441–454.

    Google Scholar 

  • Neil, J. C., 1980: Prediction of rainfall trends. Final Rept. Phase II for NSF Grant AIM 76-11379. Illinois State Water Survey. Urbana 103 pp.

    Google Scholar 

  • Newton, H. J., 1982: Using periodic autoregressive for multiple spectral estimation.Technometrics. 24, 109–116.

    Google Scholar 

  • Oladipo, E. O., 1985: A comparative performance analysis of three meteorological drought indices.J. Climatology 5, 655–664.

    Google Scholar 

  • Parzen, E., 1969: Multiple time series modelling. In:Multivariate Analysis, Vol. 2: Krishnaiah, P. R. (ed.). New York: Academic Press, 389–409.

    Google Scholar 

  • Priestley, M. B., 1981:Spectral Analysis and Time Series. New York: Academic Press (2 Vol.), 890 pp.

    Google Scholar 

  • Radoski, H. R., Zawalick, E. J., Fourgere, P. F., 1976: The superiority of maximum entropy power spectrum techniques applied to geomagnetic micropulsations.Phys. Earth Planet. Int. 12, 208–216.

    Google Scholar 

  • Rao, K. N., George, C. J., Morey, P. E., Metha, N. K., 1973: Spectral analysis of drought index (Palmer) for India.India J. Met. Hydro. Geophys. 24, 231–270.

    Google Scholar 

  • Reed, R. J., Campbell, W. J., Rasumussen, L. A., Rogers, D. G., 1962: Evidence of a downward propagating annual wind reversal in the equatorial stratosphere.J. Geophys. Res. 66, 813–818.

    Google Scholar 

  • Reid, J. S., 1979: Confidence limits and maximum entropy spectra.J. Geophys. Res. 84, 5289–5301.

    Google Scholar 

  • Rhode, H., Virji, H., 1976: Trends and periodicities in East African rainfall data.Mon. Wea. Rev. 104, 307–315.

    Google Scholar 

  • Robinson, E. A., 1967:Multichannel Time Series Analysis with Digital Computer Programs. San Francisco: Holden-Day, 288 pp.

    Google Scholar 

  • Ross, C. H., 1975: Maximum entropy analysis. Unpublished Manuscript. Meteorological Office. Bracknell 47 pp.

    Google Scholar 

  • Rovelli, A., 1982: On the information time scale of geophysical records in maximum entropy spectral analysis.IEEE Trans. Geos. Remote Sensing. GE-20, 158–161.

    Google Scholar 

  • Schickedanz, P. T., Bowen, E. G., 1977: The Computation of climatological power spectra.J. Appl. Met. 16, 359–367.

    Google Scholar 

  • Steel, R. G. D., Torrie, J. H., 1960:Principles and Procedures of Statistics. New York: McGraw-Hill Book Co. Inc., 479 pp.

    Google Scholar 

  • Swingler, D. N., 1979: A comparison between Burg's maximum entropy method and a non-recursive technique for the spectral analysis of deterministic signals.J. Geophys. Res. 84, 679–685.

    Google Scholar 

  • Thompson, D. J., 1977: Spectrum estimation techniques for characterization and development of WT4 waveguide-1.Bell Syst. Tech. J. 56, 1769–1815.

    Google Scholar 

  • Ulrych, T. J., 1972: Maximum entropy spectrum of truncated sinusoids.J. Geophys. Res. 77, 1396–1400.

    Google Scholar 

  • Ulrych, T. J., Bishop, T. N., 1975: Maximum entropy spectral analysis and autoregressive decomposition.Rev. Geophys. Space Phys. 33, 183–200.

    Google Scholar 

  • Ulrych, T. J., Clayton, R. W., 1976: Time series modelling and maximum entropy.Phys. Earth Planet Int. 12, 188–200.

    Google Scholar 

  • Wilkinson, R. H., 1981: Will the real MEM please stand up? Proc. IEEE ASSP, 508–511.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oladipo, E.O. Spectral analysis of climatological time series: On the performance of periodogram, non-integer and maximum entropy methods. Theor Appl Climatol 39, 40–53 (1988). https://doi.org/10.1007/BF00867656

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00867656

Keywords

Navigation