Skip to main content
Log in

Effects of convective clouds on the large-scale vorticity budget

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The effects of clouds on the large-scale vorticity budget are parameterized in terms of cloud mass flux and momentum differences between the cloud ensemble and the large-scale environment. The cloud mass flux distribution is calculated using the parameterization scheme of Arakawa and Schubert (1974). For the determination of the momentum effects of a cloud ensemble, three different parameterization concepts are developed: first, constant momentum in the cloud which is injected from the environment in the convergence layer of the lower troposphere; second, a generation of a vortex couplet induced by the tilting of horizontal vorticity components; third, drag effects of clouds which interact with the large-scale flow.

The computed momentum effects from each of the three parameterizations are compared with the residual of the large-scale vorticity budget for B/C-scale observations during GATE 74 Phase III using a composite technique. With moderate convection and wind shear best results are achieved by the description of the vortex couplet; intense convection and small wind shear are best explained by the constant cloud momentum model; the drag of the clouds on the large-scale flow appears to dominate during periods of weak convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., Schubert, W. H., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I.J. Atmos. Sci.,31, 674–701.

    Google Scholar 

  • Bellamy, J., 1949: Objective calculations of divergence, vertical velocity and vorticity.Bull. Am. Meteor. Soc.,30, 45–49.

    Google Scholar 

  • Bjerknes, V., Bjerknes, J., Solberg, H., Bergeron, T., 1933:Physikalische Hydrodynamik mit Anwendung auf die dynamische Meteorologie, Berlin: Springer, 797 pp.

    Google Scholar 

  • Breuch, M., Ruprecht, E., 1977: Determination of the cloud mass flux distribution from direct observations within tropical disturbances during GATE. “Meteor” Forsch-Ergebnisse, ReiheB, Nr. 12, 31–41.

  • Charney, J. G., 1963: A note on large-scale motions in the tropics.J. Atmos. Sci.,20, 607–609.

    Google Scholar 

  • Cho, H. R., 1985: Rates of entrainment and detrainment of momentum of cumulus clouds.Mon. Wea. Rev.,113, 1920–1932.

    Google Scholar 

  • Cho, H. R., Cheng, L., Bloxam, R. M., 1979: The representation of cumulus cloud effects in the large-scale vorticity equation.J. Atmos. Sci.,36, 127–139.

    Google Scholar 

  • Cho, H. R., Cheng, L., 1980: Parameterization of horizontal transport of vorticity by cumulus convection.J. Atmos. Sci.,37, 812–826.

    Google Scholar 

  • Esbensen, S. K., Shapiro, L. J., Tollerud, E. I., 1987: The consistent parameterization of the effects of cumulus clouds on the large-scale momentum and vorticity fields.Mon. Wea. Rev.,115, 664–669.

    Google Scholar 

  • Esbensen, S. K., Tollerud, E. I., Chu, J. H., 1982: Cloud-cluster-scale circulations and the vorticity budget of synoptic-scale waves over the eastern Atlantic intertropical convergence zone.Mon. Wea. Rev.,110, 1677–1692.

    Google Scholar 

  • Hitschfeld, W., 1960: The motion and erosion of convective storms in severe vertical wind shear.J. Meteor.,17, 270–282.

    Google Scholar 

  • Klemp, J. B., Wilhelmson, R. B., 1978: The simulation of three-dimensional convective storm dynamics.J. Atmos. Sci.,35, 1070–1096.

    Google Scholar 

  • König, W., Ruprecht, E., 1986: Investigation of the diagnostic determination of cumulus cloud mass fluxes by the parameterization of Arakawa and Schubert.Beitr. Phys. Atmosph.,59, 237–250.

    Google Scholar 

  • Kropfli, R. A., Miller, L. J., 1976: Kinematic structure and flux quantities in a convective storm from dual-Doppler Radar observations.J. Atmos. Sci.,33, 520–529.

    Google Scholar 

  • Madelung, E., 1957:Die mathematischen Methoden des Physikers. 6. Aufl., Berlin: Springer, 535 pp.

    Google Scholar 

  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear.Quart. J. Roy. Meteor. Soc.,78, 530–542.

    Google Scholar 

  • Peterson, R. E. Jr., 1984: A triple-Doppler Radar analysis of a discretely propagating multicell convective storm.J. Atmos. Sci.,41, 2973–2990.

    Google Scholar 

  • Pichler, H., Reuter, H., 1970: On the scale analysis of vorticity creation and the formation of vortices.Arch. Met. Geoph. Biokl., Ser. A,19, 237–244.

    Google Scholar 

  • Reed, R. J., Johnson, R. H., 1974: The vorticity budget of synoptic-scale wave disturbances in the tropical Western Pacific.J. Atmos. Sci.,37, 1784–1790.

    Google Scholar 

  • Riehl, H., Pearce, R. P., 1968: Studies on the interaction between synoptic and mesoscale weather elements in the tropics. Part II: Vorticity budgets derived from Caribbean data. Atmos. Sci. Paper No. 126, CSU, Fort Collins, 32 pp.

  • Ruprecht, E., 1982 a: An investigation of tropical cloud clusters over the GATE area. Part I: The environmental fields of the cloud ensembles within the cloud clusters.Beitr. Phys. Atmosph.,55, 61–78.

    Google Scholar 

  • Ruprecht, E., 1982 b: An investigation of tropical cloud clusters over the GATE area. Part II: Vertical transport by cumulus and cumulonimbus drafts and energy budgets.Beitr. Phys. Atmosph.,55, 85–107.

    Google Scholar 

  • Ruprecht, E., Gray, W. M., 1976: Analysis of satellite-observed tropical cloud clusters. I. Wind and dynamic fields.Tellus,28, 391–413.

    Google Scholar 

  • Schneider, E. K., Lindzen, R. S., 1976: A discussion of the parameterization of momentum exchange by cumulus convection.J. Geophys. Res.,81, 3158–3160.

    Google Scholar 

  • Shapiro, L. J., 1978: The vorticity budget of a composite African tropical wave disturbance.Mon. Wea. Rev.,106, 806–817.

    Google Scholar 

  • Shapiro, L. J., Stevens, D. E., 1980: Parameterization of convective effects on the momentum and vorticity budgets of synoptic-scale Atlantic tropical waves.Mon. Wea. Rev.,108, 1816–1826.

    Google Scholar 

  • Sommerfeld, A., 1964:Mechanik der deformierbaren Medien. 6. Aufl. Leipzig: Akad. Verlagsgesellsch., 360 pp.

    Google Scholar 

  • Sui, C. H., Yanai, M., 1984: Vorticity budget of the A/B area and its interpretation. Proc. 15th Conf. on Hurricanes and Tropical Meteorology, Miami, Amer. Meteor. Soc., 465–472.

  • Sui, C. H., Yanai, M., 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence.J. Atmos. Sci.,43, 1618–1642.

    Google Scholar 

  • Tollerud, E. I., Esbensen, S. K., 1983: An observational study of the upper-tropospheric vorticity fields in GATE cloud cluster.Mon. Wea. Rev.,111, 2161–2175.

    Google Scholar 

  • Tollerud, E. I., Esbensen, S. K., 1984: A note on the production of vorticity by parameterized cumulus clouds in general circulation models. Climatic Res. Inst. Report, No. 59, Oregon State Univ., Corvallis, 42 pp.

    Google Scholar 

  • Williams, K. T., Gray, W. M., 1973: Statistical analysis of satellite-observed trade wind cloud cluster in the western North Pacific.Tellus,25, 313–336.

    Google Scholar 

  • Yanai, M., Esbensen, S. K., Chu, J. H., 1973: Determination of bulk properties of tropical cloud cluster from large-scale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.

    Google Scholar 

  • Yanai, M., Sui, C. H., Chu, J. H., 1982: Effects of cumulus convection on the vorticity field in the tropics. Part II: Interpretation.J. Meteor. Soc. Japan,60, 411–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, W., Ruprecht, E. Effects of convective clouds on the large-scale vorticity budget. Meteorl. Atmos. Phys. 41, 213–229 (1989). https://doi.org/10.1007/BF01026111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026111

Keywords

Navigation