Skip to main content
Log in

The longitudinal movement of stratospheric ozone waves as determined by satellite

Aus Satellitenmessungen abgeleitete zonale Bewegung von stratosphärischen Ozonwellen

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

With total ozone sensors on earth-orbitung satellites the ozone distribution over the entire earth may be measured daily. The conclusions from some of the Nimbus III measurements are discussed in this paper. A comparison of time-longitude variations of stratospheric radiance values at 60°S with values of the total ozone indicated that low (high) radiance values correspond very closely with the low (high) total ozone amounts. The speed at which these ozone ‘waves’ progress eastward is greatest in the winter hemisphere. The speed of eastward progression decreases as one approaches the lower latitudes in the winter hemisphere. In the equatorial region the progression of the ozone ‘waves’ appears to be slowly westward. In the Northern Hemisphere the waves progress slowly eastward during summer. The intensity of the ozone ‘waves’ was also observed to change with latitude. These temporal and spatial fluctuations are related mainly to the motion of dynamic tropospheric systems. The extremely tight ozone gradients, which may be seen in the winter hemisphere data, have been shown to be associated with strong baroclinic zones in the lower stratosphere and upper troposphere, which are moving eastward. Assuming uniform zonal velocity we found Rossby wavelengths that varied from 2500 to 3700 km.

Zusammenfassung

Der Gesamtozongehalt kann auf globaler Basis täglich von Satelliten aus gemessen werden, die die Erde umkreisen. Solche Messungen wurden durch den Nimbus-III-Satelliten durchgeführt. Ein Vergleich der zeitlichen und longitudinalen Veränderlichkeit der von der Stratosphäre emittierten langwelligen Strahlung in 60° südlicher Breite mit dem Gesamtozongehalt zeigte, daß niedrige (hohe) Strahlungswerte gut mit niedrigen (hohen) Gesamtozonwerten übereinstimmen. Die Phasengeschwindigkeit der nach Osten wandernden “Ozonwellen” ist in der Winterhemisphäre am größten. Die Ostwärtsbewegung nimmt gegen niedere Breiten der Winterhalbkugel ab. In äquatorialen Breiten scheinen sich die Wellen langsam gegen Westen zu bewegen. Im Sommer der Nordhemisphäre wandern die Wellen langsam gegen Osten. Die Intensität der “Ozonwellen” ändert sich ebenfalls mit der geographische Breite. Die zeitlichen und räumlichen Änderungen im Gesamtozongehalt sind hauptsächlich an die Bewegungen troposphärischer Drucksysteme geknüpft. Die starken, horizontalen Ozongradienten, welche häufig in der Winterhemisphäre beobachtet wperden, hängen mit intensiven baroklinen Zonen in der unteren Stratosphäre und der oberen Troposphäre zusammen, die sich ebenfalls nach Osten hin bewegen.

Unter Annahme einer gleichförmigen zonalen Grundströmung konnten in der Ozonverteilung Rossby-Wellen festgestellt werden, deren Wellenlänge zwischen 2500 und 3700 km variierte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbey, R. F.: Spectra of Atmospheric Motions in the Upper Troposphere over North America and Australia: Experimental results and theoretical considerations. Colorado State Univ., Dept. of Atmos. Sci., M. S. Thesis (to be published), 1973.

  2. Craig, R. A.: The Upper Atmosphere. New York: Academic Press, 1965.

    Google Scholar 

  3. Dütsch, H. U.: Atmospheric Ozone and Ultraviolet Radiation (in World Survey of Climatology, Vol. IV). Amsterdam: Elsevier, 1969.

    Google Scholar 

  4. Fabry, C., and H. Buisson: L'absorption de l'utraviolette par l'ozone et la limite du spectre solaire. J. Phys. Rad.5, 196–206 (1913).

    Google Scholar 

  5. Fritz, S.: Earth's Radiation to Space at 15 microns: Stratospheric temperature variations. J. Appl. Meteor.9, 815–825 (1970).

    Google Scholar 

  6. Hering, W. S., and T. R. Borden, Jr.: Ozonesonde Observations over North America, Vol. 2. Environ. Res. Paper, No. 38, Report AFCRL-64-30(II), 1964.

  7. Hering, W. S., and T. R. Borden, Jr.: Ozonesonde Observations over North America, Vol. 3. Environ. Res. Report No. 133, Report AFCRL-64-30(III), 1965.

  8. Hering, W. S., and T. R. Borden, Jr.: Mean Distributions of Ozone Density over North America, 1963/64. Environ. Res. Paper, No. 162, Report AFCRL-65-913, 1965.

  9. Hering, W. S., and T. R. Borden, Jr.: Ozonesonde Observations over North America, Vol. 4. Environ. Res. Paper, No. 297, Report AFCRL-64-30 (IV), 1967.

  10. Kulkarni, R. N.: The Vertical Distribution of Atmospheric Ozone and Possible Transport Mechanisms in the Stratosphere of the Southern Hemisphere. Quart. J. Roy. Meteor. Soc.92, 363–374 (1966).

    Google Scholar 

  11. London, J.: The Distribution of Total Ozone in the Northern Hemisphere. Beitr. Physik Atmosphäre26, 254–263 (1963).

    Google Scholar 

  12. Lovill, J. E.: Transport Processes in Orographically Induced Gravity Waves as Indicated by Atmospheric Ozone. Atmospheric Science Paper, No. 135, Colorado State Univ., 1969.

  13. Lovill, J. E.: Dynamics of the Structure of the Atmosphere over Mountainous Terrain from 4–70 km as Inferred from High-Altitude Chaff, Ozone sensors and Superpressure Balloons. Atmospheric Science Paper, No. 160, Colorado State Univ., 1970.

  14. Lovill, J. E.: Characteristics of the General Circulation of the Atmosphere and the Global Distribution of Total Ozone as Determined by the Nimbus III Satellite Infrared Interferometer Spectrometer. Atmospheric Science Paper, No. 180, Colorado State Univ., 1972.

  15. Lovill, J. E., and A. Miller: The Vertical Distribution of Ozone over the San Francisco Bay Area. J. Geophys. Res.73, 5073–5079 (1968).

    Google Scholar 

  16. Mahlman, J. D.: Relation of Tropopause-Level Index Changes to Radioative Fallout Fluctuations. Colorado State Univ., Atmospheric Science Technical Paper 70: 84–109, USAEC Report COO-1340-2, 1965.

  17. Monin, A. S., and A. M. Yaglom: Statistical Hydromechanics, Vol. 2. “Nauka”, Moscow, 1967.

    Google Scholar 

  18. Namias, J.: Extended Forecasting by Mean Circulation Methods. U. S. Weather Bureau, Report, 1947.

  19. Newell, R. E.: Further Ozone Transport Calculations and the Spring Maximum in Ozone Amount. Pure and Appl. Geophys.59, 191–206 (1964).

    Google Scholar 

  20. Pittock, A. B.: Seasonal and Year-to-Year Ozone Variations from Soundings over Southeastern Australia. Quart. J. Roy. Meteor. Soc.94, 563–575 (1968).

    Google Scholar 

  21. Prabhakara, C., E. B. Rodgers, and V. V. Salomonson: Global Distribution of Total Ozone Derived from Nimbus III Satellite during April–July, 1969, and Its Implication to Upper Tropospheric Circulation. NASA Report X-651-71-463, Greenbelt, Maryland, Goddard Space Flight Center, 1971.

    Google Scholar 

  22. Reiter, E. R.: Jet Stream Meteorology. Chicago: Univ. of Chicago Press, 1963.

    Google Scholar 

  23. Reiter, E. R.: Atmospheric Transport Processes, Part II: Chemical Tracers. USAEC, Division of Technical Information, TID-25314, 1971.

  24. Reiter, E. R.: Atmospheric Transport Processes, Part III: Hydrodynamic Tracers. USAEC, Division of Technical Information, TID-25731, 1972.

  25. Reiter, E. R., and J. D. Mahlman: Heavy Radioactive Fallout over the Southern United States, November 1962. J. Geophys. Res.70, 4501–4520 (1965).

    Google Scholar 

  26. Vinnichenko, N. K.: The Kinetic Energy Spectrum in the Free Atmosphere — 1 second to 5 years. Tellus,22, 158–166 (1970).

    Google Scholar 

  27. Wooldridge, G., and E. R. Reiter: Large-Scale Atmospheric Circulation Characteristics as Evident from GHOST Balloon Data. J. Atmos. Sci.27, 183–196 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, E.R., Lovill, J.E. The longitudinal movement of stratospheric ozone waves as determined by satellite. Arch. Met. Geoph. Biokl. A. 23, 13–27 (1974). https://doi.org/10.1007/BF02245552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245552

Keywords

Navigation