Skip to main content
Log in

Breaking strengths of pollen grain walls

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

50% breaking point pressures of pollen grain walls of eleven species were determined. The breaking point pressures of most pollen grain walls are equivalent to those reported in the literature for other types of living cell walls such as bacterial spore coats, algal cell walls, mold sporophyte cells, and dicot suspension culture cells. The strongest pollen grain walls are two or three orders of magnitude stronger, however. Pollen grain walls are proportionately very thick in comparison to other types of cell walls. It is this thickness, not the construction or physical properties of the pollen grain wall, that most probably accounts for their strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algie, J. E., Lindsay, J. A., 1983: Some physical properties of coat material fromBacillus stearothermophilus spores. — Curr. Microbiol.9: 121–126.

    Google Scholar 

  • Bolick, M. R., 1978: Taxonomic, evolutionary, and functional considerations ofCompositae pollen ultrastructure and sculpture. — Pl. Syst. Evol.130: 209–218.

    Google Scholar 

  • —, 1981: Mechanics as an aid to interpreting pollen structure and function. — Rev. Palaeobot. Palynol.35: 61–80.

    Google Scholar 

  • Carpita, N. C., 1985: Tensile strength of cell walls of living cells. — Pl. Physiol.79: 485–488.

    Google Scholar 

  • Elleman, C. J., Dickinson, H. G., 1986: Pollen—stigma interactions inBrassica. IV. Structural reorganization in the pollen grains during hydration. — J. Cell Sci.80: 141–157.

    Google Scholar 

  • —, 1987: Fixation ofBrassica oleracea pollen during hydration: a comparative study. — Pollen & Spores29: 273–290.

    Google Scholar 

  • Heslop-Harrison, J., 1975: The adaptive significance of the exine. — InFerguson, I. K., Muller, J., (Eds.): The evolutionary significance of the exine, pp. 27–38. — London, New York: Academic Press.

    Google Scholar 

  • —, 1979a: Pollen walls as adaptive systems. — Ann. Missouri Bot. Gard.66: 813–829.

    Google Scholar 

  • —, 1979b: An interpretation of the hydrodynamics of pollen. — Amer. J. Bot.66: 737–743.

    Google Scholar 

  • Heslop-Harrison, Y., Heslop-Harrison, J., 1982: The microfibrillar component of the pollen intine: Some structural features. — Ann. Bot.50: 831–842.

    Google Scholar 

  • Kerhoas, C., Gay, G., Dumas, C., 1987: A multidisciplinary approach to the study of the plasma membrane ofZea mays pollen during controlled dehydration. — Planta171: 1–10.

    Google Scholar 

  • Kress, W. J., Stone, D. E., 1982: Nature of the sporoderm in monocotyledons, with special reference to the pollen grains ofCanna andHeliconia. — Grana21: 129–148.

    Google Scholar 

  • Muller, J., 1979: Form and function in angiosperm pollen. — Ann. Missouri Bot. Gard.66: 593–632.

    Google Scholar 

  • —, 1981: Exine architecture and function in someLythraceae andSonneratiaceae. — Rev. Palaeobot. Palynol.35: 93–123.

    Google Scholar 

  • Pacini, E., 1990: Harmomegathic characters ofPteridophyta spores andSpermatophyta pollen. — Pl. Syst. Evol. Suppl.5: 53–69.

    Google Scholar 

  • Payne, W. W., 1972: Observations of harmomegathy in pollen ofAnthophyta. — Grana12: 93–98.

    Google Scholar 

  • —, 1981: Structure and function in angiosperm pollen wall evolution. — Rev. Palaeobot. Palynol.35: 39–60.

    Google Scholar 

  • Prahl, A.-K., Springstubbe, H., Grumbach, K., Wiermann, R., 1985: Studies on sporopollenin biosynthesis: The effect of inhibitors of carotenoid biosynthesis on sporopollenin accumulation. — Z. Naturf.40C: 621–626.

    Google Scholar 

  • Scotland, R. W., Barnes, S. H., Blackmore, S., 1990: Harmomegathy in theAcanthaceae. — Grana29: 37–45.

    Google Scholar 

  • Skvarla, J. J., Turner, B. L., Patel, V. C., Tomb, A. S., 1977: Pollen morphology in theCompositae and in morphologically related families. — InHeywood, V. H., Harborne, J. B., Turner, B. L., (Eds.): The biology and chemistry of theCompositae, pp. 141–248. — London: Academic Press.

    Google Scholar 

  • —, 1970: The pollen wall ofCanna and its similarity to the germinal apertures of other pollen. — Amer. J. Bot.57: 519–529.

    Google Scholar 

  • Snedecor, G. W., Cochran, W. G., 1967: Statistical methods. — Ames, Iowa: Iowa State University Press.

    Google Scholar 

  • Stone, D. E., 1987: Developmental evidence for the convergence ofSassafras (Laurales) andHeliconia (Zingiberales) pollen. — Grana26: 179–191.

    Google Scholar 

  • Wainwright, S. A., Biggs, W. D., Currey, J. D., Gosline, J. M., 1976: Mechanical design in organisms. — New York: Wiley.

    Google Scholar 

  • Walker, J. W., 1976: Evolutionary significance of the exine in the pollen of primitive angiosperms. — InFerguson, I. K., Muller, J., (Eds.): The evolutionary significance of the exine, pp. 251–308. — London: Academic Press.

    Google Scholar 

  • Wodehouse, R. P., 1935: Pollen grains. — New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolick, M.R., Vogel, S. Breaking strengths of pollen grain walls. Pl Syst Evol 181, 171–178 (1992). https://doi.org/10.1007/BF00937442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937442

Key words

Navigation