Skip to main content
Log in

Restriction enzyme analysis of the nuclear 45s ribosomal DNA of six cultivated Alliums (Alliaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of objective molecular characters. Restriction fragment length polymorphisms in the nuclear 45s ribosomal DNA (rDNA) were identified among two of five accessions of each of six cultivated Alliums. Restriction enzyme sites forBamHI,DraI,EcoRI,EcoRV,SacI, andXbaI were mapped. Different lengths of the rDNA repeat unit among the cultivated Alliums were due to sizes of the intergenic spacer. Nineteen polymorphic restriction enzyme sites were discovered and used to estimate phylogenetic relationships. Cladistic analyses based on Wagner parsimony were completed without an outgroup and resulted in two equally most parsimonious trees of 22 steps. A combined analysis of differences at RE sites in the ribosomal (19 characters) and chloroplast (15 characters) DNA generated a single most parsimonious tree of 39 steps. Single trichotomies were observed at 40 and 41 steps. Strict consensus of the three trees of 41 or fewer steps consisted of a lineage forA. tuberosum, a second forA. ampeloprasum andA. sativum, and a third forA. cepa, A. fistulosum, andA. schoenoprasum. Estimates of phylogenetic relationships based on variability at restriction enzyme sites in the rDNA and chloroplast DNA agree with the classification scheme ofTraub. Because of the predominance of autapomorphies, restriction enzyme analysis of the nuclear 45s rDNA is of limited use in estimating phylogenies amongAllium sections. However it is useful in the establishment of interspecific hybridity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., Honeycutt, R., 1986: rDNA: evolution over a billion years. — InDutta, S., (Ed.): DNA Systematics II. Plants, pp. 81–135. — Boca Raton, FL: CRC Press.

    Google Scholar 

  • Coley-Smith, J., Esler, J., 1983: Infection of cultivars on onion, leek, garlic, andAllium fistulosum bySclerotium cepivorum. — Pl. Path.32: 373–376.

    Google Scholar 

  • El-Gadi, A., Elkington, T., 1975: Comparison of the Giemsa c-band karyotypes and the relationships ofAllium cepa, A. fistulosum, andA. galanthum. — Chromosoma51: 19–23.

    Google Scholar 

  • Ellis, P., Eckenrode, C., 1979: Factors influencing resistance inAllium sp. to onion maggot. — Bull. Entomol. Soc. Amer.25: 151–153.

    Google Scholar 

  • Emsweller, S., Jones, H., 1935: An interspecific hybrid inAllium. — Hilgardia9: 265–273.

    Google Scholar 

  • Feinberg, A., Vogelstein, B., 1983: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. — Anal. Biochem.132: 6–13.

    PubMed  Google Scholar 

  • Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution39: 783–791.

    Google Scholar 

  • Gerlach, W., Bedbrook, J., 1979: Cloning and characterization of ribosomal RNA genes from wheat and barley. — Nucleic Acid Res.7: 1869–1885.

    PubMed  Google Scholar 

  • Gottlieb, L., 1977: Electrophoretic evidence and plant systematics. — Ann. Missouri Bot. Gard.64: 161–179.

    Google Scholar 

  • Havey, M., 1991a: Phylogenetic relationships among cultivatedAllium species from restriction enzyme analysis of the chloroplast genome. — Theor. Appl. Genet.61: 752–757.

    Google Scholar 

  • —, 1991b: Molecular characterization of the interspecific origin of viviparous onion. — J. Heredity82: 501–503.

    Google Scholar 

  • Jones, R., Rees, H., 1969: Nuclear DNA variation inAllium. — Heredity23: 591–605.

    Google Scholar 

  • Jorgensen, R., Cluster, P., 1988: Modes and tempos in the evolution of nuclear ribosomal DNA: New characters for evolutionary studies and new markers for genetic and population studies. — Ann. Missouri Bot. Gard.75: 1238–1247.

    Google Scholar 

  • —, 1987: Structure and variation in ribosomal RNA genes of pea. — Pl. Mol. Biol.8: 3–12.

    Google Scholar 

  • Maeda, T., 1937: Chiasma studies inAllium fistulosum, Allium cepa, and their F1, F2 and backcross hybrids. — Japan J. Genet.13: 146–159.

    Google Scholar 

  • Maggini, F., Garbari, F., 1977: Amounts of ribosomal DNA inAllium (Liliaceae). — Pl. Syst. Evol.128: 201–208.

    Google Scholar 

  • —, 1981: Sequence heterogeneity of the ribosomal DNA inAllium cepa (Liliaceae). — Protoplasma108: 163–171.

    Google Scholar 

  • —, 1978: Individual variation of the nucleolus organizer regions inAllium cepa andA. sativum. — Chromosoma66: 173–183.

    Google Scholar 

  • Peffley, E., 1986: Evidence for chromosomal differentiation ofAllium fistulosum andA. cepa. — J. Amer. Soc. Hort. Sci.111: 126–129.

    Google Scholar 

  • Porter, D., Jones, H., 1933: Resistance of some of the cultivated species ofAllium to pink root (Phoma terrestris). — Phytopathology23: 290–298.

    Google Scholar 

  • Rigby, P., Dieckmann, M., Rhodes, C., Berg, P., 1977: Labelling DNA to high specific activity in vitro by nick translation with DNA Polymerase I. — J. Mol. Biol.113: 237–251.

    PubMed  Google Scholar 

  • Rogers, S., Honda, S., Bendich, A., 1986: Variation in the ribosomal RNA genes among individuals ofVicia faba. — Pl. Mol. Biol.6: 339–345.

    Google Scholar 

  • Schaal, B., Learn, G., 1988: Ribosomal DNA variation within and among plant populations. — Ann. Missouri Bot. Gard.75: 1207–1216.

    Google Scholar 

  • Schaffer, H., Sederoff, R., 1981: Improved estimation of DNA fragment lengths from agarose gels. — Anal. Biochem.115: 113–122.

    PubMed  Google Scholar 

  • Schubert, I., Ohle, H., Hanelt, P., 1983: Phylogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae). — Pl. Syst. Evol.143: 245–256.

    Google Scholar 

  • Stearn, W., 1944: Notes on the genusAllium in the Old World. — Herbertia11: 11–37.

    Google Scholar 

  • Sytsma, K., Schaal, B., 1985: Phylogenetics of theLisianthius skinneri (Gentianaceae) species complex in Panama utilizing DNA restriction fragment analysis. — Evolution39: 594–608.

    Google Scholar 

  • Traub, H., 1968: The subgenera, sections and subsections ofAllium L. — Pl. Life24: 147–163.

    Google Scholar 

  • Vvedensky, A., 1944: The genusAllium in the USSR. — Herbertia11: 65–218.

    Google Scholar 

  • Walker, J., Jones, H., Clarke, A., 1944: Smut resistance in anAllium species hybrid. — J. Agric. Res.69: 1–8.

    Google Scholar 

  • Wendelbo, P., 1969: New subgenera, sections and species ofAllium. — Bot. Not.122: 25–37.

    Google Scholar 

  • White, T., Bruns, T., Lee, S., Taylor, J., 1990: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. — In: PCR Protocols: A guide to methods and applications, pp. 315–322. — New York: Academic Press.

    Google Scholar 

  • Williams, S., DeBry, R., Feder, J., 1988: A commentary of the use of ribosomal DNA in systematic studies. — Syst. Zool.37: 60–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havey, M.J. Restriction enzyme analysis of the nuclear 45s ribosomal DNA of six cultivated Alliums (Alliaceae). Pl Syst Evol 181, 45–55 (1992). https://doi.org/10.1007/BF00937586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937586

Key words

Navigation