Skip to main content
Log in

Estimates of hierarchical variation in flower morphology in natural populations ofScleranthus annuus (Caryophyllaceae), an inbreeding annual

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The variation in two sets of morphological characters of the flowers of the highly inbreedingScleranthus annuus (Caryophyllaceae) was assessed using 15–20 plants from each of 20 natural populations from the southernmost region of Sweden. The stamen fertility data set consisted of 10 characters describing the degree of fertility of the ten stamens/staminoids, while the sepal/gynoecium data set comprised 10 sepal characters, together with style and stigma length. Substantial variation was found in both the degree of development and the fertility of the stamens, the degree of variability in stamen fertility being related to stamen position within the flower. Considerable variation was found in the characters of the sepal and the gynoecium. Hierarchical analyses of variance indicated that 29% of the variation in total male reproductive effort was distributed among populations, 28% among plants within populations and 43% represented within-plant variation. The corresponding averages for the characters from the sepal/gynoecium data set are 26, 38, and 35%: a greater proportion of the total variance in female reproductive characters is accounted for by among individual variation than is the case with the male reproductive characters. Significance tests of Mahalanobis’ distances derived by canonical variate analyses indicated that all populations were significantly separated using the sepal/gynoecium data set, while only 50% of the pairwise comparisons on the basis of the stamen fertility data set were significant. Cluster analysis did not reveal any aggregation of the populations. The incongruence of the two data sets and their ability to discriminate between the populations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, S., 1989: Phenotypic plasticity inCrepis tectorum (Asteraceae). — Pl. Syst. Evol.168: 19–38.

    Google Scholar 

  • Barrett, S. C. H., Shore, J. S., 1987: Variation and evolution of breeding systems in theTurneria ulmifolia L. complex (Turneraceae). — Evolution41: 340–354.

    Google Scholar 

  • Campbell, D. R., Waser, N. M., 1989: Variation in pollen flow within and among populations ofIpomopsis aggregata. — Evolution43: 1444–1455.

    Google Scholar 

  • Clegg, M. T., 1990: Dating the monocot-dicot divergence. — Trends Ecol. Evol.5: 1–4.

    Google Scholar 

  • Dickinson, T., Knowles, P., Parker, W. H., 1988: Data set congruence in Northern Ontario tamarack (Larix laricina, Pinaceae). — Syst. Bot.13: 442–455.

    Google Scholar 

  • Galen, C., 1989: Measuring pollinator-mediated selection on morphometric floral traits: Bumblebees and the alpine sky pilot,Polemonium viscosum. — Evolution43: 882–890.

    Google Scholar 

  • Giles, B. E. G., Edwards, K. J. R., 1983: Quantitative variation within and between populations of the wild barley,Hordeum murinum. — Heredity51: 325–333.

    Google Scholar 

  • Gittins, R., 1985: Canonical analysis. A review with applications in ecology. — Biomathematics 12. — Berlin: Springer.

    Google Scholar 

  • Hamrick, J. L., Godt, M. J. W., 1989: Allozyme diversity in plant species. — InBrown, A. H. D., Clegg, M. T., Kahler, A. L., Weir, B. S., (Eds.): Plant population genetics, breeding and genetic resources, pp. 43–63. — Sunderland: Sinauer.

    Google Scholar 

  • Hillel, J., Feldman, M. W., Simchen, G., 1973: Mating systems and populations structure in two closely related species of the wheat group. I. Variation between and within populations. — Heredity30: 141–167.

    Google Scholar 

  • Kannenberg, L. W., Allard, R. W., 1967: Population studies in predominantly self-pollinated species. VIII. Genetic variability in theFestuca microstachys complex. — Evolution21: 227–240.

    Google Scholar 

  • Lewontin, R. C., 1984: Detecting population differences in quantitative characters as opposed to gene frequencies. — Amer. Naturalist123: 115–124.

    Google Scholar 

  • Löhn, M., Prentice, H. C., 1990: Mosaic variation in SwedishPetrorhagia prolifera (Caryophyllaceae): the partitioning of morphometric and electrophoretic diversity. — Biol. J. Linn. Soc.41: 353–373.

    Google Scholar 

  • Mastenbroek, O., Prentice, H. C., Heringa, J., Hogeweg, P., 1984: Corresponding patterns of geographic variation among populations ofSilene latifolia (=S. alba =S. pratensis) (Caryophyllaceae). — Pl. Syst. Evol.145: 227–242.

    Google Scholar 

  • Nelson, G., 1989: Species and taxa: systematics and evolution. — InOtte, D., Endler, J. A., (Eds.): Speciation and its consequences, pp. 60–84. — Sunderland: Sinauer.

    Google Scholar 

  • Nybom, H., Rogstad, S. H., Schaal, B. A., 1990: Genetic variation detected by use of the M13 “DNA fingerprint” probe inMalus, Prunus, andRubus. — Theor. Appl. Genet.79: 153–156.

    Google Scholar 

  • Ornduff, R., 1969: Reproductive biology in relation to systematics. — Taxon18: 121–133.

    Google Scholar 

  • , 1968: Numerical taxonomy ofLimnantaceae. — Amer. J. Bot.55: 173–182.

    Google Scholar 

  • Prentice, H. C., 1979: Numerical analysis of infraspecific variation in EuropeanSilene alba andS. dioica (Caryophyllaceae). — Bot. J. Linn. Soc.78: 181–212.

    Google Scholar 

  • , 1980: Variation inSilene dioica (L.)Clarv.: numerical analysis of populations from Scotland. — Watsonia13: 11–26.

    Google Scholar 

  • , 1986: Continuous variation and classification. — InStyles, B. T., (Ed.): Infraspecific classification of wild and cultivated plants, pp. 21–32. — Oxford: Clarendon Press.

    Google Scholar 

  • Reyment, R. A., Blackith, R. E., Campbell, N. A., 1985: Multivariate morphometrics. 2nd edn. — London: Academic Press.

    Google Scholar 

  • Ruuth, T., Nilsson, Ö., 1978:Scleranthus annuus ssp.polycarpos, tuvknavel, i Sverige. — Svensk Bot. Tidskr.72: 165–169.

    Google Scholar 

  • SAS 1985: SAS User's guide, statistics. 5th edn. — Cary, N.C.: SAS Inst. Inc.

    Google Scholar 

  • Sattler, R., 1973: Organogenesis of flowers. — Toronto: University of Toronto Press.

    Google Scholar 

  • Schwaegerle, K. E., Garbutt, K., Bazzaz, F. A., 1986: Differentiation among nine populations ofPhlox. I. Electrophoretic and quantitative variation. — Evolution40: 506–517.

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. The principles and practice of numerical taxonomy. — San Francisco: Freeman.

    Google Scholar 

  • Stanton, M. L., Preston, R. E., 1988: Ecological consequences and phenotypic correlates of petal size variation in wild radish,Raphanus sativus (Brassicaceae). — Amer. J. Bot.75: 528–539.

    Google Scholar 

  • Stebbins, G. L., 1950: Variation and evolution in plants. — New York: Columbia University Press.

    Google Scholar 

  • Svensson, L., 1985: An estimate of pollen carryover by ants in a natural population ofScleranthus perennis L. (Caryophyllaceae). — Oecologia (Berlin)66: 373–377.

    Google Scholar 

  • , 1988: Inbreeding, crossing and variation in stamen number inScleranthus annuus (Caryophyllaceae) from a discontinuous population. — Amer. J. Bot.77: 889–896.

    Google Scholar 

  • , 1991: The effect of crossing distance and population subdivision on floral morphology inScleranthus annuus (Caryophyllaceae), a selfing annual. — Pl. Syst. Evol.174: 5–16.

    Google Scholar 

  • Sytsma, K. J., 1990: DNA and morphology: inference of plant phylogeny. — Trends Ecol. Evol.5: 104–110.

    Google Scholar 

  • Tucker, S. C., 1989: Overlapping organ initiation and common primordia in flowers ofPisum sativum (Leguminosae: Papilionoideae). — Amer. J. Bot.76: 714–729.

    Google Scholar 

  • Venable, D. L., Burquez, A. M., 1989: Quantitative genetics of size, shape, life-history, and fruit characteristics of the seed-heteromorphic compositeHeterosperma pinnatum. I. Variation within and among populations. — Evolution43: 113–124.

    Google Scholar 

  • Venäläinen, J., 1984:Scleranthus annuus ja sen alalajit Suomessa. — Mem. Soc. Fauna Flora Fennica60: 61–67.

    Google Scholar 

  • Vickery, R. K. Jr., 1984: Biosystematics 1983. — InGrant, W. F., (Ed.): Plant biosystematics, pp. 1–24. — NewYork: Academic Press.

    Google Scholar 

  • Widén, B., Svensson, L., 1992: Conservation of genetic variation—the effect of population size and gene flow. — InHansson, L., (Ed.): Nature conservation by ecological principles, a boreal perspective. Monographs in Conservation Biology, pp. 113–161. — Amsterdam: Elsevier (in press).

    Google Scholar 

  • Wilkinson, L., 1989: SYSTAT: The system for statistics. — Evanston: SYSTAT Inc.

    Google Scholar 

  • Wyatt, R., 1984a: The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). I. Morphological correlates. — Evolution38: 804–816.

    Google Scholar 

  • , 1984b: The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). III. Reproductive effort and pollen-ovule ratios. — Syst. Bot.9: 432–440.

    Google Scholar 

  • , 1984c: The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). IV. Correlated changes in the gynoecium. — Amer. J. Bot.71: 1006–1014.

    Google Scholar 

  • , 1988: Phylogenetic aspects of the evolution of self-pollination. — InGottlieb, L. D., Jain, S. K., (Eds.): Plant evolutionary biology, pp. 109–132. — London: Chapman and Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, L. Estimates of hierarchical variation in flower morphology in natural populations ofScleranthus annuus (Caryophyllaceae), an inbreeding annual. Pl Syst Evol 180, 157–180 (1992). https://doi.org/10.1007/BF00941149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00941149

Key words

Navigation