Skip to main content
Log in

Determination of tungsten with pyrocatechol violet by first-derivative solid-phase spectrophotometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Derivative spectrophotometry was applied to solid-phase spectrophotometry in order to enhance its sensitivity and remove the large background caused by the absorbance of the resin layer. Determination of micro-amounts of tungsten with pyrocatechol violet to form a 2∶1 green complex in acid medium which is fixed on a dextran-type anion-exchange resin (Sephadex QAEA-25) is described as an example for the application of this technique. The absorbance of the resin packed in a 1-mm spectrophotometric cell, was measured directly. The characteristic peak amplitude of the signal at 674 nm in the first-derivative spectrum is useful for quantitative determination of tungsten (3–16 μg 1−1; RSD 5.8%) in natural and industrial water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Fogg, D. R. Marriott, D. T. Burns,Analyst 1970,95, 848.

    Google Scholar 

  2. D. F. Wood, R. T. Clark,Analyst 1958,83, 326.

    Google Scholar 

  3. Z. Marczenko,Separation and Spectrophotometric Determination of Elements, Ellis-Horwood, Chichester, 1986, pp. 604–605.

    Google Scholar 

  4. H. Onishi,Photometric Determination of Traces of Metals, Wiley, 1989, pp. 588–593.

  5. K. Yoshimura, H. Waki,Talanta 1985,32, 345.

    Google Scholar 

  6. K. Yoshimura, H. Waki, S. Ohashi,Talanta 1976,26, 449.

    Google Scholar 

  7. H. Ishii,Fresenius Z. Anal. Chem. 1984,319, 23.

    Google Scholar 

  8. I. Orbe Payá,Ph. D. Thesis, University of Granada, 1991.

  9. Standard Methods for the Examination of Water and Wastewater, 15th Ed., American Public Health Association, Washington, D.C., 1981.

  10. A. K. Majumdar, C. P. Savariar,Naturwissenschaften 1958,45, 84.

    Google Scholar 

  11. A. Molina-Díaz, J. J. Vida-Sagrista, M. I. Pascual-Reguera, L. F. Capitán-Vallvey,Internat. J. Environ. Anal. Chem. 1991,45, 219.

    Google Scholar 

  12. M. I. Pascual-Reguera, A. Molina-Díaz, N. Ramos Martos, L. F. Capitán-Vallvey,Anal. Lett. 1991,24, 2245.

    Google Scholar 

  13. IUPAC, Nomenclature, Symbols, Units and their Usage in Spectrometrical Analysis,Pure Appl. Chem. 1976,105, 45.

    Google Scholar 

  14. Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry,Anal. Chem. 1980,52, 2242.

    Google Scholar 

  15. T. Hashimoto,Anal. Chim. Acta,1971,56, 347.

    Google Scholar 

  16. K. H. Reinhadt, H. J. Müller,Fresenius Z. Anal. Chem. 1978,292, 359.

    Google Scholar 

  17. A. Savitzky, M. J. E. Golay,Anal. Chem. 1964,36, 1627.

    Google Scholar 

  18. A. Molina-Díaz, J. M. Herrador-Mariscal, M. I. Pascual-Reguera, L. F. Capitán-Vallvey,Talanta 1993,40, 1059.

    Google Scholar 

  19. K. L. Cheng, K. Ueno, T. Imamura,Handbook of Organic Analytical Reagents, CRC, Boca Raton, 1982, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascual-Reguera, M.I., Molina-Diaz, A., Pacheco-Castillo, M.C. et al. Determination of tungsten with pyrocatechol violet by first-derivative solid-phase spectrophotometry. Mikrochim Acta 112, 225–235 (1994). https://doi.org/10.1007/BF01242838

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01242838

Key words

Navigation