Skip to main content
Log in

Gas chromatography-mass spectrometric analysis of oxidative degradation products of sporopollenin inMagnolia grandiflora (Magnoliaceae) andHibiscus syriacus (Malvaceae)

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Sporopollenin can be dissolved in water by oxidative degradation with using potassium permanganate (KMnO4). in mature pollen grain ofMagnolia grandiflora andHibiscus syriacus some organic compounds were extracted from the aqueous phase into hexane, and analyzed by using gas chromatography-mass spectrometry (GC-MS). The analysis shows that the extracted compounds Include some organosilicon compounds. By researching of mass spectra data base, the organosillicon compounds are suggested as 1, 1, 1, 5, 7, 7, 7-heptamethyl-3,3-bis(trimethylsilox))tetrasiloxane and 1, 1, 1, 3, 5, 7, 7, 7-octamethyl-3, 3- bis(trimethylsiloxy)tetrasiloxane. 1,2-benzendicarboxylic acid butyl 2-ethylhexyl ester is also suggested by data base research in the extracted compounds. The present study implies that silicon (Si) is considered to be located in inner part of three dimensional structure of sporopollenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackmore, S. andClaugher, D. 1987 Observation on the substructural organisation of the exine inFagus sylvatica L. (Fagaceae), andScorzonera hispanica L. (Composite: Lactuceae). Rev. Palaeobot. Palynol.53: 175–184.

    Google Scholar 

  • Brooks, J. andShaw, G. 1968. Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nature219: 532–533.

    CAS  PubMed  Google Scholar 

  • Claugher, D. 1986. Pollen wall structure, a new interpretation. Scan. Elec. Microscopy1: 291–299.

    Google Scholar 

  • Crang, R.E. andMay, G. 1974. Evidence for silicon as a prevalent elemental component in pollen wall structure. Can. J. Bot.52: 2171–2174.

    CAS  Google Scholar 

  • Erdtman, G. 1960. The acetolysis method: a revised description. Svensk Bot. Tidskrift54: 561–564.

    Google Scholar 

  • Espelie, K.E., Loewus, F.A., Pugmire, R.J., Woolfenden, W.R., Baldi, B.G. andGiven, P.H. 1989. Structural analysis ofLilium longiflorum sporopollenin by13C NMR spectroscopy. Phytochemistry28: 751–753.

    Article  CAS  Google Scholar 

  • Guilford, W.J., Schneider, D.M., Labovitz, J. andOpella, S.J. 1988. High resolution solid state13C NMR spectroscopy of sporopollenin for different plant taxa. Plant Physiol.86: 134–136.

    CAS  Google Scholar 

  • Hemsley, A.R., Barrie, P.J., Chaloner, W.G. andScott, A.C. 1993. The composition of Sporopollenin and its use in living and fossil plant systematics. Grana Suppl.1: 2–11.

    Google Scholar 

  • Herminghaus, S., Arendt, S., Gubatz, S., Rittscher, M. andWiermann, R. 1988. Aspects of sporopollenin biosynthesis: phenols as integrated compounds of the biopolymer.In M. Cresti, P. Gori, and E. Pacini, eds., Sexual Reproduction in Higher Plants, Springer, New York, pp. 169–174.

    Google Scholar 

  • Kawase, M. andTakahashi, M. 1995. Chemical composition of sporopollenin inMagnolia grandiflora (Magnoliaceae) andHibiscus syriacus (Malvaceae). Grana34: 242–245.

    Google Scholar 

  • Prahl, A.K., Rittscher, M. andWiermann, R. 1986. New aspects of sporopollenin biosynthesis.In P.K. Stumph ed., The Biochemistry of Plants-a Comprehensive Treaties, Springer, New York, pp. 313–318.

    Google Scholar 

  • Prahl, A.K., Springstubbe, H., Grumbach, K. andWiermann, R. 1985. Studies on sporopollenin biosynthesis: the effect of inhibitors of carotenoid biosynthesis on sporopollenin accumulation. Z. Naturforsch.40C: 621–626.

    CAS  Google Scholar 

  • Rowley, J.R., Dahl, A.O. andRowley, J.S. 1981. Substructure in exines ofArtenisia vulgaris (Asteraceae). Rev. Palaeobot. Palynol.35: 1–38.

    Google Scholar 

  • Rowley, J.R. 1990. The fundamental structure of the pollen exine. P1. Syst. Evol. Suppl.5: 13–29.

    Google Scholar 

  • Schulze Osthoff, K. andWiermann, R. 1987. Phenols as investgated compounds of sporopollenin fromPinus pollen. J. Plant Physiol.131: 5–15.

    Google Scholar 

  • Setoguchi, H., Tobe, H., Ohba, H. andOkazaki, M. 1993. Silicon-accumulating idioblasts in leaves of Cecropiaceae (Urticales). J. Plant Res.106: 327–335.

    Article  Google Scholar 

  • Wehling, K., Niester, Ch., Boon, J.J., Willemse, M.T.M. andWiermann, R. 1989.p-Coumaric acid — a monomer in the sporopollenin, skeleton. Planta179: 376–380.

    Article  CAS  Google Scholar 

  • Van Bergen, P.F., Collinson, M.E. andDe Leeuw, J.W. 1993. Chemical composition and ultrastructure of fossil and extant salvinialean microspore massulae and megaspores. Grana Suppl.1: 18–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawase, M., Takahashi, M. Gas chromatography-mass spectrometric analysis of oxidative degradation products of sporopollenin inMagnolia grandiflora (Magnoliaceae) andHibiscus syriacus (Malvaceae). J. Plant Res. 109, 297–299 (1996). https://doi.org/10.1007/BF02344476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344476

Key words

Navigation