Skip to main content
Log in

Fractals and the analysis of growth paths

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple practical method exists for classifying and comparing planar curves composed of connected line segments. This method assigns, a single numberD, the fractal dimension, to each curve.D=log(n)/[log(n)+log(d/L)], where:n is the number of line segments,L is the total length of the line segments, andd is the planar diameter of the curve (the greatest distance between any two endpoints). At one end of the spectrum, for straight line curves,D=1; at the other end of the spectrum, for random walk curves,D→2. Standard statistics are done on the logarithms of the fractal dimension [log(D)]. With this measure, trails of biological movement, such as the growth paths of the cells and the paths of wandering organisms, can be analyzed to determine the likelihood that these trails are random walks and also to compare the straightness of the trails before and after experimental interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Barenblatt, G. I. and A. S. Monin. 1983. “Similarity Principles for the Biology of Pelagic Animals.”Proc. natn. Acad. Sci. U.S.A. 80, 3540–3542.

    Article  Google Scholar 

  • Berns, G. S. and M. W. Berns. 1982. “Computer-based Tracking of Living Cells.”Exp. Cell Res. 142, 103–109.

    Article  Google Scholar 

  • Berg, H. C. 1983.Random Walks in Biology. Princeton Princeton University Press.

    Google Scholar 

  • — and D. A. Brown. 1972. “Chemotaxis inEscherichia coli Analysed by Three-dimensional Tracking.”Nature 239, 500–504.

    Article  Google Scholar 

  • Bradbury, R. H. and R. E. Reichet. 1983. “Fractal Dimension of a Coral Reef at Ecological Scales.”Mar. Ecol. Prog. Series 10, 169–172.

    Google Scholar 

  • Bradley, J. V. 1968.Distribution-free Statistical Tests. Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Broadbent, S. R. and D. G. Kendall. 1953. “The Random Walk ofTrichostronghlus retortaeformis.”Biometrics 9, 460–466.

    Article  Google Scholar 

  • Colquhoun, D. 1971.Lectures, on Biostatistics. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Dunn, G. A. 1983. “Characterising a Kinesis Response: Time-averaged Measures of Cell Speed and Directional Persistence.” InLeukocyte Locomotion and Chemotaxis, Eds H. Keller and G. O. Till, pp. 14–33. Basel: Birkhauser.

    Google Scholar 

  • Feller, W. 1957.An Introduction to Probability Theory and its Applications, 2nd edn. New York: Wiley.

    MATH  Google Scholar 

  • Gail, M. H. and C. W. Boone. 1970. “The Locomotion of Mouse Fibroblasts in Tissue Culture,”Biophys. J. 10, 980–993.

    Google Scholar 

  • Hatlee, M. D. and J. J. Kozak. 1981. “Stochastic Flows in Integral and Fractal Dimensions and Morphogenesis.”Proc. natn. Acad. Sci. U.S.A. 78, 972–975.

    Article  MathSciNet  Google Scholar 

  • Hughes, B. D., E. W. Montroll and M. F. Schlesinger. 1982. “Fractal Random Walks.”J. statist. Phys. 28, 111–126.

    Article  MATH  MathSciNet  Google Scholar 

  • Kareiva, P. M. and N. Shigesada. 1983. “Analyzing Insect Movement as a Correlated Random Walk.”Oecologia 56, 234–238.

    Article  Google Scholar 

  • Katz, M. J. 1984. “How Straight do Axons Grow?”J. Neurosci. (in press).

  • Katz, M. J. 1985.Templets and the Explanation of Complex Patters. Cambridge: Cambridge University Press (in press).

    Google Scholar 

  • —, E. B. George and L. J. Gilbert. 1984. “Axonal Elongation as a Stochastic Walk.”Cell Motil. 4, 351–370.

    Article  Google Scholar 

  • — and R. J. Lasek. 1980. “Guidance Cue Patterns and Cell Migration in Multicellular Organisms.”Cell Motil. 1, 141–157.

    Article  Google Scholar 

  • Kraft, C. H. and C. van Eeden. 1968.A Nonparametric Introduction to Statistics. New York: MacMillan.

    Google Scholar 

  • Lefevre, J. 1983. “Teleonomical Optimization of a Fractal Model of the Pulmonary Arterial Bed.”J. theor. Biol. 102, 225–248.

    Article  Google Scholar 

  • Loehle, C. 1983. “The Fractal Dimension and Ecology.”Speculations Sci. Technol. 6, 131–142.

    Google Scholar 

  • Lovejoy, S. 1982. “Area-Perimeter Relation for Rain and Cloud Areas.”Science 216, 185–187.

    Google Scholar 

  • Mandelbrot, B. B. 1977.Fractals: Form, Chance, and Dimension. New York: W. H. Freeman.

    MATH  Google Scholar 

  • — 1983.The Fractal Geometry of Nature. New York: W. H. Freeman.

    Google Scholar 

  • — 1984. “Fractals in Physics: Squig Clusters, Diffusions, Fractal Measures, and the Unicity of Fractal Dimensionality.”J. statist. Phys. 34, 895–930.

    Article  MathSciNet  Google Scholar 

  • Mihram, G. A. 1972.Simulation. Statistical Foundations And Methodology. New York: Academic Press.

    MATH  Google Scholar 

  • Peterson, S. C. and P. B. Noble. 1972. “A Two-dimensional Random-walk Analysis of Human Granulocyte Movement.”Biophys. J. 12, 1048–1055.

    Article  Google Scholar 

  • Segel, L. A., I. Chet and Y. Henis. 1977. A Simple Quantitative Assay for Bacterial Motility.”J. gen. Microbiol. 98, 329–337.

    Google Scholar 

  • Skellam, J. G. 1951. “Random Dispersal in Theoretical Populations.”Biometrika 38, 196–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Sokal, R. R. and J. G. Rohlf. 1969.Biometry. The Principles and Practice of Statistics in Biological Research. New York: W. H. Freeman.

    Google Scholar 

  • Trinkaus, J. P. 1984.Mechanisms of Cell Movement in vitro.Cells into Organs. The Forces that Shape the Embryo, Chap. 7, pp. 179–244. New Jersey: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, M.J., George, E.B. Fractals and the analysis of growth paths. Bltn Mathcal Biology 47, 273–286 (1985). https://doi.org/10.1007/BF02460036

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460036

Keywords

Navigation