Skip to main content
Log in

Further properties of the two-membrane model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The properties of nonlinear equations describing the solute and solvent transport across a simplified Patlak-Goldstein-Hoffman model (two membranes in series without unstirred layers) are investigated both analytically and numerically. The analysis shows that the principal coefficients measured in transport experiments in the presence of active transport are dependent on the experimental conditions. These ‘apparent’ system parameters are extensions of the corresponding parameters determined both in passive systems and in the linear Kedem-Katchalsky theory. Moreover, they are related to the local phenomenological coefficients of the single membranes of the array. Several relationships between measurable quantities and the local system parameters are indicated, allowing the planning of experiments aimed at the measurement of the latter. Data in the literature have been used to check the proposed volume flow equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Axel, L. 1976. “Flow Limits of Kedem-Katchalsky Equations for Fluid Flux.”Bull. math. Biol. 38, 671–677.

    Article  MATH  Google Scholar 

  • Bentzel, C. J., M. Davies, W. N. Scott, M. Zatzman and A. K. Solomon. 1968. “Osmotic Volume Flow in the Proximal Tubule of Necturus Kidney.”J. gen. Physiol. 51, 517–533.

    Article  Google Scholar 

  • Bresler, E. H. and R. P. Wendt. 1969a. “Diffusive and Convective Flow Across Membranes: Irreversible Thermodynamic Approach.”Science 163, 944–945.

    Google Scholar 

  • — and —. 1969b. “Reply to Manning.”Science 166, 1438.

    Google Scholar 

  • Brodsky, W. A. and T. P. Schilb. 1965. “Osmotic Properties of Isolated Turtle Bladder.”Am. J. Physiol. 208, 46–57.

    Google Scholar 

  • Caplan, S. R. and D. C. Mikulecky. 1966. “Transport Processes in Membranes.” inIon Exchange, Ed. J. A. Marinsky. Vol. I, pp. 1–64, New York: Marcel Dekker.

    Google Scholar 

  • Celentano, F., G. Monticelli and M. N. Orsenigo. 1978. “Non Linear Volume Flow Dependence on Osmotic Pressure Difference in Frog Skin.”J. Physiol., Paris 74, 365–367.

    Google Scholar 

  • Curran, P. F. 1960. “Na, Cl and Water Transport by Rat Ileumin Vitro.”J. gen. Physiol. 43, 1137–1148.

    Article  Google Scholar 

  • — and J. R. McIntosh. 1962. “A Model System for Biological Water Transport.”Nature, Lond. 193, 347–348.

    Article  Google Scholar 

  • Dainty, J. 1963. “The Polar Permeability of Plant Cell Membranes to Water.”Protoplasma 57, 220–228.

    Article  Google Scholar 

  • Diamond, J. M. 1964. “The Mechanism of Isotonic Water Transport.”J. gen. Physiol. 48, 15–42.

    Article  Google Scholar 

  • — 1966. “Non Linear Osmosis.”J. Physiol., Lond. 183, 58–82.

    Google Scholar 

  • — 1978. “Solute-linked Water Transport in Epithelia.” InMembrane Transport Processes, Ed. J. F. Hoffman, pp. 257–276. New York: Raven Press.

    Google Scholar 

  • — and W. H. Bossert. 1967. “Standing Gradient Osmotic Flow. A Mechanism for Coupling of Water and Solute Transport in Epithelia.”J. gen. Physiol. 50, 2061–2083.

    Article  Google Scholar 

  • Fischbarg, J. 1978. “Fluid Transport by Corneal Endothelium.” InComparative Physiology: Water, Ions and Fluid Mechanics, Ed. K. Schmidt-Nielsen, L. Bolis and S. H. P. Maddrell, pp. 21–39. Cambridge: University Press.

    Google Scholar 

  • —, C. R. Warshavsky and J. J. Lim. 1977. “Pathways for Hydraulically and Osmotically Induced Water Flows across Epithelia.”Nature, Lond. 266, 71–74.

    Article  Google Scholar 

  • Hakim, A. A. and N. Lifson. 1969. “Effects of Pressure on Water and Solute Transport by Dog Intestinal Mucosain Vitro.”Am. J. Physiol. 216, 276–284.

    Google Scholar 

  • Hays, R. M. 1968. “A New Proposal for the Action of Vasopressin, Based on Studies of a Complex Synthetic Membrane.”J. gen. Physiol. 51, 385–398.

    Article  Google Scholar 

  • Hill, A. E. 1975a. “Solute-Solvent Coupling in Epithelia: a Critical Examination of the Standing-gradient. Flow Theory.”Proc. R. Soc. Lond. Biol. Sci. 190, 99–114.

    Google Scholar 

  • —. 1975b “Solute-Solvent Coupling in Epithelia: Contribution of the Junctional Pathway to Fluid Production.”Proc. R. Soc. Lond. Biol. Sci. 191, 537–547.

    Article  Google Scholar 

  • Kedem, O. and A. Katchalsky. 1958. “Thermodynamic Analysis of the Permeability of Biological Memvranes to Non-electrolytes.”Biochim. Biophys. Acta 27, 229–246.

    Article  Google Scholar 

  • — and —. 1963. “Permeability of Composite Membranes. Part 3. Series Array of Elements.”Trans. Faraday Soc. 59, 1941–1953.

    Article  Google Scholar 

  • Koefoed-Johnsen, V. and H. H. Ussing. 1958. “The Nature of the Frog Skin Potential.”Acta physiol. scand. 42, 298–308.

    Google Scholar 

  • Levitt, D. G. 1975. “General Continuum Analysis of Transport through Pores.”Biophys. J. 15, 533–551.

    Google Scholar 

  • Lichtenstein, N. S. and A. Leaf. 1966. “Evidence for a Double Series Permeability Barrier at the Mucosal Surface of the Toad Bladder.”Ann. N.Y. Acad. Sci. 137, 556–565.

    Google Scholar 

  • Lifson, N. and M. B. Visscher. 1947. “Osmosis in Living Systems.” InMedical Physics, Ed. O. Glasser, Vol. 1, 869–892. Chicago, IL: The Year Book Medical Publishers.

    Google Scholar 

  • Loeschke, K., C. J. Bentzel and T. Z. Csaky. 1970. “Asymmetry of Osmotic Flow in Frog Intestine: Functional and Structural Correlation.”Am. J. Physiol. 218, 1723–1731.

    Google Scholar 

  • Lucké, B. and M. McCutcheon. 1932. “The Living Cell as an Osmotic System.”Physiol. Rev. 12, 68–139.

    Google Scholar 

  • MacRobbie, E. A. and H. H. Ussing. 1961. “Osmotic Behaviour of the Epithelial Cells of Frog Skin.”Acta physiol. scand. 53, 348–365.

    Google Scholar 

  • Meyer, J., F. Sauer and D. Woermann. 1974. “Coupling of Mass Transfer and Chemical Reaction across an Asymmetric Sandwich Membrane.” InMembrane Transport in Plants, Ed. U. Zimmermann and J. Dainty, pp. 28–35. Berlin: Springer Verlag.

    Google Scholar 

  • Michaels, D. W. and D. Dennis. 1973. “Asymmetric Phospholipid Bilayer Membranes: Formation and Electrical Characterization.”Biochem. biophys. Commun. 51, 357–363.

    Article  Google Scholar 

  • Mikulecky, D. C. 1977. “A Simple Network Thermodynamic Method for Series-Parallel Coupled Flows: II. The Non-linear Theory, with Applications to Coupled Solute and Volume Flow in a Series Membrane.”J. theor. Biol. 69, 511–541.

    Article  MathSciNet  Google Scholar 

  • — and S. R. Thomas. 1978. “A simple Network Thermodynamic Method for Series-Parallel Coupled Flows: III. Application to Coupled Solute and Volume Flows Through Epithelial Membranes.”J. theor. Biol. 73, 697–710.

    Article  Google Scholar 

  • Monticelli. G. and F. Celentano. 1980. “Transport Coefficients in a Non Linear Series Membranes Array.” InDevelopments in Biophysical Research. Ed. A. Borsellino, P. Omodeo, R. Strom, A. Vecli and E. Wanke, pp. 157–164. New York: Plenum Press.

    Google Scholar 

  • — and — and G. Torelli. 1975. “Sodium Chloride Reflection Coefficient in Rabbit Gall Bladder.”Biochim. biophys. Acta 401, 41–50.

    Article  Google Scholar 

  • Ogilvie, J. T., J. R. McIntosh and P. F. Curran. 1963. “Volume Flow in a Seriesmembrane System.”Biochim. biophys. Acta 66, 441–444.

    Google Scholar 

  • Patlak, C. S., D. A. Goldstein and J. F. Hoffman. 1963. “The Flow of Solute and Solvent Across a Two Membranes System.”J. theor. Biol. 5, 426–442.

    Article  Google Scholar 

  • Przestalski, S. and M. Kargol. 1976. “Composite Membranes.” InBiophysics of Membrane Transport, Ed. J. Kuczera and S. Przestalski, pp. 53–69. Wroclaw, Poland: Agricultural University.

    Google Scholar 

  • Richardson, I. W. 1972. “Multiple Membrane Systems as Biological Models.”J. Membrane Biol. 8, 219–236.

    Article  Google Scholar 

  • Ripoche, P., J. Bourguet and M. Parisi. 1973. “The Effect of Hypertonic Media on Water Permeability of Frog Urinary Bladder.”J. gen. Physiol. 61, 110–124.

    Article  Google Scholar 

  • Sackin, H. and E. L. Boulpaep. 1975. “Models for Coupling of Salt and Water Transport. Proximal Tubular Reabsorption inNecturus Kidney.”J. gen. Physiol. 66, 671–733.

    Article  Google Scholar 

  • Schafer, J. A., S. L. Troutman and T. E. Andreoli. 1974. “Osmosis in Cortical Collecting Tubules—ADH Independent Osmotic Flow Rectification.”J. gen. Physiol. 64, 228–240.

    Article  Google Scholar 

  • Sha'afi, R. I., G. T. Rich, D. C. Mikulecky and A. K. Solomon. 1970. “Determination of Urea Permeability in Red Cells by Minimum Method.”J. gen. Physiol. 55, 427–450.

    Article  Google Scholar 

  • Tomicki, B. and F. Ludwików. 1971. “Further Properties of the Two-membrane System Pressure in the Middle Compartment.”Studia biophys. 26, 21–30.

    Google Scholar 

  • Urakabe, S., J. S. Handler and J. Orloff. 1970. “Effect of Hypertonicity on Permeability Properties of the Toad Bladder.”Am. J. Physiol. 218, 1179–1187.

    Google Scholar 

  • Weinstein, A. M. and J. L. Stephenson. 1979. “Electrolyte Transport across a Simple Epithelium. Steady-state and Transient Analysis.”Biophys. J. 27, 165–186.

    Article  Google Scholar 

  • — and —. 1981. “Models of Coupled Salt and Water Transport across Leaky Epithelia.”J. Membrane Biol. 60, 1–20.

    Article  Google Scholar 

  • Whitlock, R. T. and H. O. Wheeler. 1964. “Coupled Transport of Solute and Water across Rabbit Gallbladder Epithelium.”J. clin. Invest. 48, 2249–2265.

    Article  Google Scholar 

  • Wright, E. M., A. P. Smulders and J. McD. Tormey. 1972. “The Role of the Lateral Intercellular Spaces and Solute Polarization Effects in the Passive Flow of Water across the Rabbit Gallbladder.”J. Membrane Biol. 7, 198–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monticelli, G., Celentano, F. Further properties of the two-membrane model. Bltn Mathcal Biology 45, 1073–1096 (1983). https://doi.org/10.1007/BF02458831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458831

Keywords

Navigation