Skip to main content
Log in

The effect of microstructure on the rheological properties of blood

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The micromorphic theory of Eringen is applied to study the tube flow of blood. The blood is considered to be a deformable suspension, with constitutive relations of the form of those of simple microfluids. By means of energy consideration, a relation is established between the local concentration parameter and the measure of rotationality involving both macro-and micromotions. The tube flow problem is then solved with some analyses on viscosity coefficients and boundary conditions. The results obtained indicate an integrated explanation of various important physical phenomena associated with blood flow, such as the tube size dependence of the apparent viscosity and the non-uniform concentration distribution over a tube cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Acre, E. L., A. N. Bulygin and E. V. Kuvshinskii. 1965 “Assymetrie Hydromechanies,”PMM,29, 297–308.

    Google Scholar 

  • Ariman, T. 1971. “On the Analysis of Blood Flow.”J. Biomech.,4, 185–192.

    Article  Google Scholar 

  • Barbee, J. H. and G. R. Coeklet. 1971. “Prediction of Blood Flow in Tubes with Diameters as Small as 29 Microns.”Microvascular Res.,3, 17–21.

    Article  Google Scholar 

  • Batchelor, G. K. 1967.An Introduction to Fluid Dynamics. Cambridge University Press.

  • —— 1970. “The Stress System in a Suspension of Force-Free Particles.“J. Fluid Mech.,”41, 545–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Bretheron, F. P. 1962. “The Motion of Rigid Particles-Shear Flow at Low Reynolds Number.”J. Fluid Mech.,14, 284–304.

    Article  MathSciNet  Google Scholar 

  • Bugliarello, G. and J. Sevilla. 1970. “Velocity Distribution and Other Characteristics of Steady and Pulsatile Blood Flow in Fine Glass Tubes.”Biorheology,7, 85–107.

    Google Scholar 

  • Charm, S. E., G. S. Kurland and S. L. Brown. 1968. “The Influence of Radial Distribution and Marginal Plasma Layer or the Flow of Red Cell Suspensions.”Biorheology,5, 15–43.

    Google Scholar 

  • Cowin, S. C. 1972. “On the Polar Fluid as a Model for Blood Flow in Tubes.”Biorheology,9, 23–25.

    Google Scholar 

  • Dix, F. J. and F. W. Scott Blair. 1940.J. Appl. Physiol.,11, 574.

    Article  MATH  Google Scholar 

  • Eringen, A. C. 1964. “Simple Micro fluids.”Int. J. Engng. Sci.,2, 205–217.

    Article  MATH  MathSciNet  Google Scholar 

  • ——. 1966. “Theory of Mieropolar Fluids.”J. Math. Mech.,16, 1–18.

    MathSciNet  Google Scholar 

  • —. 1967. “Mechanics of Mieromorphie Continua.”Mechanics of Generalized Continua (Ed. E. Kröner), Springer-Verlag, pp. 18–35.

  • ——. 1970. “Balance Laws of Micromorphic Mechanics.”Int. J. Engng. Sci.,8, 819–828.

    Article  MATH  Google Scholar 

  • ——. 1972. “Micromorphic Description of Turbulent Channel Flow.”J. Math. Analysis Applic.,39, 253–266.

    Article  Google Scholar 

  • —— and E. S. Suhubi. 1964. “Nonlinear Theory of Simple Micro-Elastic Solids.”Int. J. Engng. Sci.,2, 189–203.

    Article  MATH  MathSciNet  Google Scholar 

  • Giesekus, H. 1962. “Stromungen mit Konstantem Gesehwindigkeitsgradienten und die Bewegung von darin suspendiertin Teilchen.”Rheol. Acta.,2, 101–122.

    Article  Google Scholar 

  • Goddard, J. D. and C. Miller. 1967. “Nonlinear Effects in the Rheology of Dilute Suspensions.”J. Fluid Mech.,28, 657–673.

    Article  Google Scholar 

  • Goldman, A. J., R. G. Cox and H. Brenner. 1967. “Slow Viscous Motion of a Sphere Parallel to a Plane Wall.”Chem. Engng. Sci.,22, 637–652.

    Article  Google Scholar 

  • Goldsmith, H. L. and S. G. Mason. 1967.Rheology,4, 85.

    Google Scholar 

  • Happel, J. and H. Brenner. 1965.Low Reynolds Number Hydrodynamics. Prentice-Hall.

  • Haynes, R. H. 1961.Soc. Rheol. Trans.,5, 85.

    Article  Google Scholar 

  • Houssay, B. A. 1955.Human Physiology, McGraw-Hill.

  • Kirwan, A. C. and M. S. Chang. 1970. “Cylindrical Flow of a Fluid Containing Deformable Structures.”Int. J. Engng. Sci.,8, 731–741.

    Article  MATH  Google Scholar 

  • Kuroda, D., Y. Mishiro, I. Wada and J. Tokushima. 1958.Expl. Med.,4, 73.

    Google Scholar 

  • Landau, L. D. 1959.Fluid Mechanics, p. 69.

  • Mason, S. G., H. Brenner and C. E. Chaffey. 1965.Rheol. Acta,4, 65.

    Google Scholar 

  • Scott-Blair, G. W. 1958. “The Importance of the Sigma Phenomenon in the Study of the Flow of Blood.”Rheol. Acta.,1, 123–126.

    Article  Google Scholar 

  • Segré, G. and A. Silberberg. 1962. “Behaviour of Macroscopic Rigid Spheres in Poiseuflle Flow.”J. Fluid Mech.,14, 115–157.

    Article  MATH  Google Scholar 

  • Seshadri, V. and S. P. Sutera. 1968. “Concentration Changes of Suspensions of Rigid Spheres Flowing Through Tubes.”J. Colloid Interface Sci.,27, 101–110.

    Article  Google Scholar 

  • Truesdell, E. 1960.Handbuch der Physik III/1,363.

  • Vand, V. J. 1948. “Viscosity of Solutions and Suspensions.”J. phys. Chem.,52, 277–321.

    Article  Google Scholar 

  • Wayland, H. 1967. “Rheology and the Microcirculation.”Gastroenterology,52, 342–355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, C.K., Eringen, A.C. The effect of microstructure on the rheological properties of blood. Bltn Mathcal Biology 38, 135–159 (1976). https://doi.org/10.1007/BF02471753

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471753

Keywords

Navigation