Skip to main content
Log in

Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The major photoproduct obtained on irradiation of gaseous NH3 and CO mixtures is ammonium cyanate; lesser amounts of urea, biurea, biuret semi-carbazide, formamide and cyanide were observed. The formation of the major gas phase photolysis product may be rationalized by the following reaction sequence:

Urea is probably formed from NH4NCO in a thermal reaction while formamide may result from the disproportionation of NH2CO.

Photocatalytic syntheses of14C-urea, -formamide, and -formaldehyde are effected by irradiation of14CO and NH3 in the presence of Vycor, silica gel, or volcanic ash shale surfaces. These syntheses are catalyzed by ultraviolet wavelengths longer than those absorbed by the gaseous reactants. The syntheses are also effected when the surface material is first irradiated in the presence of CO followed by a dark incubation with NH3. Apparently, the initiating step is a light dependent formation of a reactive form of CO on the surface.

A discussion is given on the possible contribution of these reactions to the abiotic synthesis of organic nitrogen compounds on Mars, on the primitive Earth and in interstellar space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson,D.M., Biemann,K., Orgel,L.E., Oró,J., Owen,T., Shulman,G.P., Toulmin,P., Urey,H.C. (1972). Icarus 16, 111

    Google Scholar 

  • Bailey,J.L. (1969). In: Techniques in protein chemistry, 2nd edition, p.34. New York: Elsevier

    Google Scholar 

  • Berthelot,D., Gaudechon,H. (1912). Compt. Rend. 155, 207

    Google Scholar 

  • Boden,J.C., Back,R.A. (1970). Trans. Farad. Soc. 66, 175

    Google Scholar 

  • Brinkmann,R.T. (1971). Science 174, 944

    Google Scholar 

  • Buhl,D. (1971). Nature 234, 332

    Google Scholar 

  • Cafferata,L.F.R., Kerr,J.A., Trotman-Dickenson,A.F. (1965). J. Chem. Soc. (London), 1386

  • Dodonova,N.Ya. (1962). Vestn. Leningr. Univ. 17, No. 16, Ser. Fiz. i. Khim., No. 3, 144 (Chem. Abstr. 58, 5511, 1963).

    Google Scholar 

  • Emeleus,H.J. (1932). Trans. Fard. Soc. 28, 89

    Google Scholar 

  • Ferris,J.P., Nicodem,D.E. (1972). Nature 238, 268

    Google Scholar 

  • Ferris,J.P., Nicodem,D.E. (1974). In: The origin of life and evolutionary biochemistry, G.A.Deborin, K.Dose, S.W.Fox, M.S.Kritsky, eds., p. 107. New York: Plenum Press

    Google Scholar 

  • Ferris,J.P., Sanchez,R.A., Orgel,L.E. (1968). J.Mol.Biol. 33, 693

    Google Scholar 

  • Ferris,J.P., Williams,E.A., Nicodem,D.E., Hubbard,J.S., Voecks,G.E. (1974). Nature 249, 437

    Google Scholar 

  • Fieser,L.F., Fieser,M. (1967). In: Reagents for organic synthesis, p. 170. New York: Wiley

    Google Scholar 

  • Fink,K., Cline,R.E., Fink,R.M. (1963). Anal. Chem. 35, 389

    Google Scholar 

  • Frost,A.A., Pearson,R.G. (1961). In: Kinetics and mechanism, 2nd edition, pp. 307–316. New York: Wiley

    Google Scholar 

  • Groth,W.E., Schurath,U., Schindler,R.N. (1968). J. Phys. Chem. 72, 3914

    Google Scholar 

  • Harteck,P., Reeves,Jr.,R.R., Thompson,B.A. (1964). Naturforschg. 19a, 2

    Google Scholar 

  • Hubbard,J.S., Hardy,J.P., Horowitz,N.H. (1971). Proc. Nat. Acad. Sci. (Wash.) 68, 574

    Google Scholar 

  • Hubbard,J.S., Hardy,J.P., Voecks,G.E., Golub,E.E. (1973). J.Mol.Evol. 2, 149

    Google Scholar 

  • Kaplan,L.D., Connes,J., Connes,P. (1969). Astrophys. J. 157, L187

    Google Scholar 

  • Lemmon,R.M. (1970). Chem. Rev. 70, 95

    Google Scholar 

  • McElroy,M.B. (1972). Science 175, 443

    Google Scholar 

  • Miller,S., Parris,M. (1964). Nature 204, 1248

    Google Scholar 

  • Mitz,M.A. (1974). Origins of life (formerly Space life sciences) 5, 457

    Google Scholar 

  • Nicodem,D.E., Ferris,J.P. (1973). Icarus 19, 495

    Google Scholar 

  • Ormsby,A. (1942). J. Biol. Chem. 146, 595

    Google Scholar 

  • Schilt,A.A. (1958). Anal. Chem. 30, 1409

    Google Scholar 

  • Spall,B.C., Steacie,E.W.R. (1957). Proc. Roy. Soc. London, Sec. A., 239, 1

    Google Scholar 

  • Terenin,A.N. (1959). In: First int'l sympos. on the origin of life, A.E.Oparin et al., eds., pp. 136. New York: Pergamon Press

    Google Scholar 

  • Thompson,B.A., Harteck,P., Reeves,R.R. (1963). J. Geophys. Res. 68, 6431

    Google Scholar 

  • Tseng,S.S., Chang,S. (1974). Nature 248, 575

    Google Scholar 

  • van Trump,J.E., Miller,S.L. (1973). Earth and Planet. Sci. Lett. 20, 145

    Google Scholar 

  • Woolley,W.D., Back,R.A. (1968). Can. J. Chem. 46, 295

    Google Scholar 

  • Yokota,T., Back,R.A. (1973). Inter. J. Chem. Kin. 5, 37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, J.S., Voecks, G.E., Hobby, G.L. et al. Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3 . J Mol Evol 5, 223–241 (1975). https://doi.org/10.1007/BF01741243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01741243

Key words

Navigation