Skip to main content
Log in

Intron position as an evolutionary marker of thioredoxins and thioredoxin domains

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequencedArabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence ofChlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Amy CM, Williams AB, Naggert J, Smith S (1992) Intron-exon organization of the gene for the multifunctional animal fatty-acid synthase. Proc Natl Acad Sci USA 89:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Brugidou C, Marty I, Chartier Y, Meyer Y (1992) TheNicotiana tabacum genome encodes two cytoplasmic thioredoxin genes which are differently expressed. Mol Gen Genet 238:285–293

    Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Ann Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system: perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    Article  PubMed  CAS  Google Scholar 

  • Céske C, Buchanan BB (1986) Regulation of the formation and utilization of photosynthate in leaves. Biochim Biophys Acta 853:43–63

    Google Scholar 

  • Chanat E, Weiss U, Huttner WB, Tooze SA (1993) Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathway. EMBO J 12:2159–2168

    PubMed  CAS  Google Scholar 

  • Dellaporta SJ, Hicks JB (1983) A new plant DNA minipreparation: version II. Plant Mol Biol Report 1, 19–21

    Google Scholar 

  • Devic M, Hecht V, Berger C, Lindsey K, Delseny M, Gallois P (1995) Assessment of promotor trap as a tool to study zygotic embryogenesis inArabidopsis thaliana. CR Acad Sci Paris 318:121–128

    Google Scholar 

  • Droux M, Miginiac-Maslow M, Jacquot JP, Crawford NA, Kosower NS, Buchanan BB (1987) Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation. Arch Biochem Biophys 256:372–380

    Article  PubMed  CAS  Google Scholar 

  • Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266:496–507

    Article  PubMed  CAS  Google Scholar 

  • Forman-Kay JD, Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM (1991) High resolution three dimensional structure of reduced recombinant human thioredoxin in solution. Biochemistry 30:2685–2698

    Article  PubMed  CAS  Google Scholar 

  • Freedman RB, Bulleid NJ, Hawkins HC, Paver JL (1989) Role of protein disulphide-isomerase in the expression of native proteins. Biochem Soc Symp 55:167–192

    PubMed  CAS  Google Scholar 

  • Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rp122 to the nucleus greatly preceded its loss from chloroplast and involved the gain of an intron. EMBO J 10:3073–3078

    PubMed  CAS  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  PubMed  CAS  Google Scholar 

  • Golding GB, Tsao N, Pearlman RE (1994) Evidence for intron capture: an unusual path for evolution of proteins. Proc Natl Acad Sci USA 91:7506–7509

    Article  PubMed  CAS  Google Scholar 

  • Gonnet GM, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445

    Article  PubMed  CAS  Google Scholar 

  • Hartman H, Syvanen M, Buchanan BB (1990) Contrasting evolutionary histories of chloroplast thioredoxins f and m. Mol Biol Evol 7:247–254

    PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  • Huang X (1994) On global sequence alignment. Comput Appl Biosci 10:227–235

    PubMed  CAS  Google Scholar 

  • Hurts LD (1994) Molecular evolution. The uncertain origin of introns. Nature 371:381–382

    Article  Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Rivera-Madrid R, Marinho P, Kollarova M, Le Maréchal P, Miginiac-Maslow M, Meyer Y (1994)Arabidopsis thaliana NADPH thioredoxin reductase cDNA characterization and expression of the recombinant protein inEscherichia coli. J Mol Biol 235:1357–1363

    Article  PubMed  CAS  Google Scholar 

  • Jander G, Martin NL, Beckwith J (1994) Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J 13:5121–5127

    PubMed  CAS  Google Scholar 

  • Kamo M, Tsugita A, Wiessner C, Wedel N, Bartling D, Herrmann RG, Aguilar F, Gardet-Salvi L, Schürmann P (1989) Primary structure of spinach-chloroplast thioredoxin f: protein sequencing and analysis of complete cDNA clones for spinach-chloroplast thioredoxin f. Eur J Biochem 182:315–322

    Article  PubMed  CAS  Google Scholar 

  • Katti S, Le Master D, Eklund H (1990) Crystal structure of thioredoxin fromEscherichia coli at 168 Å resolution. J Mol Biol 212:167–184

    Article  PubMed  CAS  Google Scholar 

  • Kersanach R, Brinkman H, Liaud MK, Zhang DX, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367:387–389

    Article  PubMed  CAS  Google Scholar 

  • Kobrehel K, Wong JH, Balogh A, Kisss F, Yee BC, Buchanan BB (1992) Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol 99:919–924

    Article  PubMed  CAS  Google Scholar 

  • Lancelin JM, Stein M, Jacquot JP (1993) Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2 from the green algaChlamydomonas reinhardtii as determined by1H NMR. J Biochem 114:421–431

    PubMed  CAS  Google Scholar 

  • Li X, Nield J, Hayman D, Landgridge P (1994) Cloning a putative self-incompatibility gene from the pollen of the grassPhalaris coerulescens. Plant Cell 6:1923–1932

    Article  PubMed  CAS  Google Scholar 

  • Li X, Nield J, Hayman D, Landgridge P (1995) Thioredoxin activity in the C terminus ofPhalaris S protein. Plant J 8:133–138

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Hodges M, Gadal P, Crétin C (1992) Isolation, characterization and nucleotide sequence of a full-length pea cDNA encoding thioredoxin. Plant Mol Biol 18:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Logston JM, Palmer JD (1994) Origin of introns—early or late? Nature 369:526–528

    Article  Google Scholar 

  • Lopez Jaramillo J, Chueca A, Sahrawy M, Hermoso R, Lazaro JJ, Prado FE, Lopez Gorge J (1994) Cloning and sequencing of a pea cDNA fragment coding for thioredoxin m. Plant Physiol 105:1021–1022

    Article  PubMed  CAS  Google Scholar 

  • Marcus F, Chamberlain SH, Chu C, Masiarz FR, Shin S, Yee BC, Buchanan BB (1991) Plant thioredoxin h: an animal-like thioredoxin occurring in multiple cell compartments. Arch Biochem Biophys 287:195–198

    Article  PubMed  CAS  Google Scholar 

  • Marck C (1988) DNA Strider: a C program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836

    PubMed  CAS  Google Scholar 

  • Marty I, Meyer Y (1991) Nucleotide sequence of cDNA encoding a tobacco thioredoxin. Plant Mol Biol 17:143–147

    Article  PubMed  CAS  Google Scholar 

  • Muller EGD (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the Gi interval of the cell cycle. J Biol Chem 266:9194–9202

    PubMed  CAS  Google Scholar 

  • Pearson WR, Miller W (1992) Dynamic programming algorithms for biological sequence comparison. Methods Enzymol 210:575–601

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AE, Chesnick JB, Woolford J, Cattolico RA (1994) Chloroplast encoded thioredoxin genes in the red algaePorphyra yezoensis and Griffithsia pacifica: evolutionary implications. Plant Mol Biol 25:13–21

    Article  PubMed  CAS  Google Scholar 

  • Reith M, Munholland J (1993) A high resolution map of the chloroplast genome of the red algaPorphyra purpurea. Plant Cell 5:465–475

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Madrid R, Mestres D, Marinho P, Jacquot JP, Decottignies P, Miginiac-Maslow M, Meyer Y (1995) Evidence for five divergent thioredoxin h sequences inArabidopsis thaliana. Proc Natl Acad Sci USA 92:5620–5624

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol A6:1–10

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (1991) Redox-modulation of chloroplast enzymes. Plant Physiol 96:1–3

    PubMed  CAS  Google Scholar 

  • Shih MC, Heinrich P, Goodman HM (1988) Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242:1164–1166

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Jacquot JP, Jeannette E, Decottignies P, Hodges M, Lancelin JM, Mittard V, Schmitter JM, Miginiac-Maslow M (1995)Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression inEscherishia coli of the recombinant proteins, purification and biochemical properties. Plant Mol Biol 28:487–503

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus A, Spencer DF, Zuker M, Logsdon JM, Doolittle WF (1994) Testing the exon theory of genes: the evidence from protein structure. Science 265:202–207

    Article  PubMed  CAS  Google Scholar 

  • Von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  Google Scholar 

  • Weber K, Kabsch W (1994) Intron position in actin genes seems unrelated to the secondary structure of the protein. EMBO J 13:1280–1286

    PubMed  CAS  Google Scholar 

  • Wedel N, Clausmeyer S, Herrmann RG, Gardet-Salvi L, Schürmann P (1992) Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol Biol 18:527–533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahrawy, M., Hecht, V., Lopez-Jaramillo, J. et al. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 42, 422–431 (1996). https://doi.org/10.1007/BF02498636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498636

Key words

Navigation