Skip to main content
Log in

The compositional distribution of coding sequences and DNA molecules in humans and murids

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The compositional distributions of coding sequences and DNA molecules (in the 50-100-kb range) are remarkably narrower in murids (rat and mouse) compared to humans (as well as to all other mammals explored so far). In murids, both distributions begin at higher and end at lower GC values. A comparison of homologous coding sequences from murids and humans revealed that their different compositional distributions are due to differences in GC levels in all three codon positions, particularly of genes located at both ends of the distribution. In turn, these differences are responsible for differences in both codon usage and amino acids. When GC levels at first+second codon positions and third codon positions, respectively, of murid genes are plotted against corresponding GC levels of homologous human genes, linear relationships (with very high correlation coefficients and slopes of about 0.78 and 0.60, respectively) are found. This indicates a conservation of the order of GC levels in homologous genes from humans and murids. (The same comparison for mouse and rat genes indicates a conservation of GC levels of homologous genes.) A similar linear relationship was observed when plotting GC levels of corresponding DNA fractions (as obtained by density gradient centrifugation in the presence of a sequence-specific ligand) from mouse and human. These findings indicate that orderly compositional changes affecting not only coding sequences but also noncoding sequences took place since the divergence of murids. Such directional fixations of mutations point to the existence of selective pressures affecting the genome as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Biol 24:1–11

    Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    PubMed  Google Scholar 

  • Bilofsky HS, Burks C, Fickett JW, Goad WB, Lewitter FI, Rindone WP, Swindell LD, Tung CS (1986) The Genbank (R) genetic sequence database. Nucleic Acids Res 14:1–4

    Google Scholar 

  • Cortadas J, Olofsson B, Meunier-Rotival M, Macaya G, Bernardi G (1979) The DNA components of the chicken genome. Eur J Biochem 99:176–186

    Google Scholar 

  • Cuny G, Macaya G, Meunier-Rotival M, Bernardi G (1978) Some properties of the major component of the mouse genome. In: Boyer HW, Nicosia G (eds) Genetic engineering. Elsevier/North-Holland, Amsterdam, pp 109–115

    Google Scholar 

  • Cuny G, Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes. 1. Preparation, basic properties and compositional heterogeneity. Eur J Biochem 115:227–233

    PubMed  Google Scholar 

  • Dutrillaux B (1979) Chromosome evolution in primates: tentative phylogeny fromMicrocebus murinus (prosimian) to man. Hum Genet 48:251–314

    PubMed  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations. University of Chicago Press, Chicago

    Google Scholar 

  • Gautier C (1987a) Changements d'usage du code génétique au cours de l'évolution. Le cas des mitochondries animales. C R Acad Sci 304:123–128

    Google Scholar 

  • Gautier C (1987b) Analyse statistique et évolution des séquences d'acides nucléiques. Thèse Doctorat d'Etal, Lyon

  • Gouy M (1987) Origine et fonction de l'utilisation de la dégénérescence du code génétique chezEscherichia coli. Thèse Doctorat d'Etat, Lyon

  • Gouy M, Milleret F, Mugnier C, Jacobzone M, Gautier C (1984) ACNUC: a nucleic acid sequence data base and analysis system. Nucleic Acids Res 12:121–127

    PubMed  Google Scholar 

  • Grantham R, Gautier C (1980) Genetic distances from mRNA sequences. Naturwissenschaften 67:93–94

    PubMed  Google Scholar 

  • Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912

    PubMed  Google Scholar 

  • Lehman EL (1975) Non-parametric statistical methods based on ranks. Holden-Day, San Francisco, pp 32–40

    Google Scholar 

  • Mouchiroud D (1986) Relation entre la composition en base de l'ADN no codant du gène et la composition en codon. C R Acad Sci Paris 303:743–748

    PubMed  Google Scholar 

  • Mouchiroud D, Gautier C (1988) High codon usage change in mammalian genes. Mol Biol Evol 5:192–194

    PubMed  Google Scholar 

  • Mouchiroud D, Fichant G, Bernardi G (1987) Compositional compartmentalization and gene composition in the genome of vertebrates. J Mol Evol (in press)

  • Perrin P, Bernardi G (1987) Directional fixation of mutations in vertebrate evolution. J Mol Evol 26:301–310

    PubMed  Google Scholar 

  • Salinas J, Zerial M, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the mouse genome. Eur J Biochem 160:469–478

    PubMed  Google Scholar 

  • Sawyer JR, Ozier JC (1986) High resolution of mouse chromosomes: banding conservation between man and mouse. Science 232:1632–1635

    PubMed  Google Scholar 

  • Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol 4:430–443

    PubMed  Google Scholar 

  • Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes. 2. Reassociation kinetics. Eur J Biochem 115:235–239

    PubMed  Google Scholar 

  • Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235

    PubMed  Google Scholar 

  • Zerial M, Salinas J, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem 160:479–485

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouchiroud, D., Gautier, C. & Bernardi, G. The compositional distribution of coding sequences and DNA molecules in humans and murids. J Mol Evol 27, 311–320 (1988). https://doi.org/10.1007/BF02101193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101193

Key words

Navigation