Skip to main content
Log in

Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have previously shown that inositol-1,4,5-trisphosphate (IP3) releases Ca2+ from an intracellular calcium store in permeabilized acinar cells of rat pancreas (H. Streb et al., 1983,Nature (London) 306:67–69). This observation suggests that IP3 might provide the missing link between activation of the muscarinic receptor and Ca2+ release from intracellular stores during stimulation. In order to localize the intracellular IP3-sensitive calcium pool, IP3-induced Ca2+ release was measured in isolated subcellular fractions. A total homogenate was prepared from acinar cells which had been isolated by a collagenase digestion method. Endoplasmic reticulum was separated from mitochondria, zymogen granules and nuclei by differential centrifugation. Plasma membranes and endoplasmic reticulum were separated by centrifugation on a sucrose step gradient or by precipitation with high concentrations of MgCl2. IP3-induced Ca2+ release per mg protein in the total homogenate was the same as in leaky cells and was sufficiently stable to make short separation procedures possible. In fractions obtained by either differential centrifugation at 7000×g, sucrose-density centrifugation, or MgCl2 precipitation there was a close correlation of IP3-induced Ca2+ release with the endoplasmic reticulum markers ribonucleic acid (r=0.96, 1.00, 0.91, respectively) and NADPH cytochromec reductase (r=0.63, 0.98, 090, respectively). In contrast, there was a clear negative correlation with the mitochondrial markers cytochromec oxidase (r=−0.64) and glutamate dehydrogenase (r=−0.75) and with the plasma membrane markers (Na++K+)-ATPase (r=−0.81) and alkaline phosphatase (r=−0.77) in all fractions analyzed. IP3-induced Ca2+ release was distributed independently of zymogen granule or nuclei content of the fractions as assessed by electron microscopy. The data suggest that inositol-1,4,5-trisphosphate releases Ca2+ from endoplasmic reticulum in pancreatic acinar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affolter, H., Sigel, E. 1979. A simple system for the measurement of ion activities with solvent polymeric membrane electrodes.Anal. Biochem. 97:315–319

    PubMed  Google Scholar 

  2. Agranoff, B.W., Murphy, P., Seguin, E.B. 1983. Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets.J. Biol. Chem. 258:2076–2078

    PubMed  Google Scholar 

  3. Amsterdam, A., Jamieson, J.D. 1972. Structural and functional characterization of isolated pancreatic exocrine cells.Proc. Natl. Acad. Sci. USA 69:3028–3032

    PubMed  Google Scholar 

  4. Bayerdörffer, E., Streb, H., Eckhardt, L., Haase, W., Schulz, I. 1984. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.J. Membrane Biol. (in press)

  5. Berridge, M.J. 1981. Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism.Mol. Cell. Endocrinol. 24:115–140

    PubMed  Google Scholar 

  6. Berridge, M.J. 1983. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol.Biochem. J. 212:849–858

    PubMed  Google Scholar 

  7. Berridge, M.J., Dawson, M.C., Downes, C.P., Heslop, J.P., Irvine, R.F. 1983. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.Biochem. J. 212:473–482

    PubMed  Google Scholar 

  8. Billah, M.M., Lapetina, E.G. 1982. Rapid decrease of phosphatidylinostiol 4,5-bisphosphate in thrombin-stimulated platelets.J. Biol. Chem. 257:12705–12708

    PubMed  Google Scholar 

  9. Booth, A.G., Kenny, A.J. 1974. A rapid method for the preparation of microvilli from rabbit kidney.Biochem. J. 142:575–581

    PubMed  Google Scholar 

  10. Creba, J.A., Downes, C.P., Hawkins, P.T., Brewster, G., Michell, R.H., Kirk, C.J. 1983. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+ mobilizing hormones.Biochem. J. 212:733–747

    PubMed  Google Scholar 

  11. Downes, C.P., Wusteman, M.M. 1983. Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands.Biochem. J. 216:633–640

    PubMed  Google Scholar 

  12. Endo, M. 1977. Calcium release from the sarcoplasmic reticulum.Physiol. Rev. 57:71–108

    PubMed  Google Scholar 

  13. Grado, C., Ballou, C.E. 1961. Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide.J. Biol. Chem. 236:54–60

    PubMed  Google Scholar 

  14. Hatcher, D.W., Goldstein, G. 1969. Improved methods for determination of RNA and DNA.Anal. Biochem. 31:42–50

    PubMed  Google Scholar 

  15. Joseph, S.K., Thomas, A.P., Williams, R.J., Irvine, R.F., Williamson, J.R. 1984. Myo-inositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver.J. Biol. Chem. 259:3077–3081

    PubMed  Google Scholar 

  16. Kirk, C.J., Creba, J.A., Downes, P., Michell, R.A. 1981. Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function.Biochem. Soc. Trans. 9:377–379

    PubMed  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  18. Martin, T.F.J. 1983. Thyrotropin-releasing hormone rapidly activates the phosphodiester hydrolysis of polyphosphoinositides in GH3 pituitary cells.J. Biol. Chem. 258:14816–14822

    PubMed  Google Scholar 

  19. Michell, R.H. 1975. Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 415:81–147

    PubMed  Google Scholar 

  20. Milutinović, S., Sachs, G., Haase, W., Schulz, I. 1977. Studies on isolated subcellular components of cat pancreas: I. Isolation and enzymatic characterization.J. Membrane Biol. 36:253–279

    Google Scholar 

  21. Orchard, J.L., Davis, J.S., Larson, R.E., Farese, R.V. 1984. Effects of carbachol and pancreozymin (cholecystokinin-octapeptide) on polyphosphoinositide metabolism in the rat pancreasin vitro.Biochem. J. 217:281–287

    PubMed  Google Scholar 

  22. Putney, J.W., Burgess, G.M., Halenda, S.P., McKinney, J.S., Rubin, R.P. 1983. Effects of secretagogues on (32P) phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas.Biochem. J. 212:483–488

    PubMed  Google Scholar 

  23. Rhodes, D., Prpic, V., Exton, J.H., Blackmore, P.F. 1983. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin.J. Biol. Chem. 258:2770–2773

    PubMed  Google Scholar 

  24. Scharschmidt, B.F., Keeffe, E.B., Blankenship, N.M., Ockner, R.K. 1979. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg-and NaK-ATPase activity.J. Lab. Clin. Med. 93:790–799

    PubMed  Google Scholar 

  25. Schmidt, E. 1970. Glutamat-Dehydrogenase UV-Test.In: Methoden der enzymatischen Analyse. H.U. Bergmeyer, editor. pp. 607–613. Verlag Chemie, Weinheim

    Google Scholar 

  26. Schulz, I. 1980. Messenger role of calcium in function of pancreatic acinar cells.Am. J. Physiol. 239:G335-G347

    PubMed  Google Scholar 

  27. Sottocasa, G.L., Kuylenstierna, B., Ernster, L., Bergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria.J. Cell Biol. 32:415–438

    PubMed  Google Scholar 

  28. Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69

    Google Scholar 

  29. Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas.Am. J. Physiol. 245:G347-G357

    PubMed  Google Scholar 

  30. Thomas, A.P., Marks, J.S., Coll, K.E., Williamson, J.R. 1983. Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes.J. Biol. Chem. 258:5716–5725

    PubMed  Google Scholar 

  31. Volpi, M., Yassin, R., Naccache, P.H., Sha'afi, R.I. 1983. Chemotactic factor causes rapid decreases in phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils.Biochem. Biophys. Res. Commun. 112:957–964

    PubMed  Google Scholar 

  32. Wakasugi, H., Stolze, H., Haase, W., Schulz, I. 1981. Effect of La3+ on secretagogue-induced Ca2+ fluxes in rat isolated pancreatic acinar cells.Am. J. Physiol. 240:G281-G289

    PubMed  Google Scholar 

  33. Weiss, S.J., McKinney, J.S., Putney, J.W. 1982. Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells.Biochem. J. 206:555–560

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streb, H., Bayerdörffer, E., Haase, W. et al. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrain Biol. 81, 241–253 (1984). https://doi.org/10.1007/BF01868717

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868717

Key Words

Navigation