Skip to main content
Log in

The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Malonyl gramicidin is incorporated into lysolecithin micelles in a manner which satisfies a number of previously demonstrated criteria for the formation of the transmembrane channel structure. By means of sodium-23 nuclear magnetic resonance, two binding sites are observed: a tight site and a weak site with binding constants of approximately 100m −1 and 1m −1, respectively. In addition, off-rate constants from the two sites were estimated from NMR analyses to bek toff ≃3×105/sec andk woff ≃2×107/sec giving, with the binding constants, the on-rate constants,k ton ≃3×107/msec andk won ≃2×107/m sec.

Five different multiple occupancy models with NMR-restricted energy profiles were considered for the purpose of calculating single-channel currents as a function of voltage and concentration utilizing the four NMR-derived rate constants (and an NMR-limit placed on a fifth rate constant for intrachannel ion translocation) in combination with Eyring rate theory for the introduction of voltage dependence.

Using the X-ray diffraction results of Koeppe et al. (1979) for limiting the positions of the tight sites, the two-site model and a three-site model in which the weak sites occur after the tight site is filled were found to satisfactorily calculate the experimental currents (also reported here) and to fit the experimental currents extraordinarily well when the experimentally derived values were allowed to vary to a least squares best fit. Surprisingly the “best fit” values differed by only about a factor of two from the NMR-derived values, a variation that is well within the estimated experimental error of the rate constants.

These results demonstrate the utility of ion nuclear magnetic resonance to determine rate constants relevant to transport through the gramicidin channel and of the Eyring rate theory to introduce voltage dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O.S., Procopio, J. 1980. Ion movement through gramicidin A channels.Acta Physiol. Scand. (Suppl.) (in press)

  • Backer, H.J., Lolkema, J. 1938. Esters of methanetricarboxylic acid.Rec. Trav. Chim. Pays-Bas 57:1234

    Google Scholar 

  • Bamberg, E., Apell, H.J., Alpes, H. 1977. Structure of the gramicidin A channel: Discrimination between the πL,D and the β helix by electrical measurements with lipid bilayer membranes.Proc. Nat. Acad. Sci. USA. 74:2402

    PubMed  Google Scholar 

  • Bamberg, E., Janko, K. 1977. The action of a carbon-suboxide dimerized gramicidin A on lipid bilayer membranes.Biochim. Biophys. Acta 465:486

    PubMed  Google Scholar 

  • Bamberg, E., Kolb, H.-A., Läuger, P. 1976. Ion transport through the gramicidin A channel.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. p. 143. Academic Press, New York

    Google Scholar 

  • Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127

    PubMed  Google Scholar 

  • Bamberg, E., Läuger, P. 1977. Blocking of the gramicidin channel by divalent cations.J. Membrane Biol. 35:351

    Google Scholar 

  • Binsch, G. 1968. The study of intramolecular rate processes by dynamic nuclear magnetic resonance.In: Topics in Stereochemistry. E.L. Eliel and N.L. Allinger, editors. p. 97. Wiley, New York

    Google Scholar 

  • Bradley, R.J., Romine, W.O., Long, M.M., Ohnishi, T., Jacobs, M.A., Urry, D.W. 1977. Synthetic peptide K+ Carrier with Ca2+ inhibition.Arch. Biochem. Biophys. 178:468

    PubMed  Google Scholar 

  • Bradley, R.J., Urry, D.W., Okamoto, K., Rapaka, R.S. 1978. Channel structures of gramicidin: Characterization of succinyl derivatives.Science 200:435

    PubMed  Google Scholar 

  • Bull, T.E., 1972. Nuclear magnetic relaxation of spin-3/2 nuclei involved in chemical exchange.J. Mag. Res. 8:344

    Google Scholar 

  • Bull, T.E., Andrasko, J., Chiancone, E., Forsén, A., 1973. Pulsed nuclear magnetic resonance studies on23Na,7Li and35Cl binding to human oxy- and carbon monooxyhalmoglobin.J. Mol. Biol. 73:251

    PubMed  Google Scholar 

  • Chang, D.C., Woessner, D.E. 1978. Spin-echo study of23Na relaxation in skeletal muscle. Evidence of sodium ion binding inside a biological cell.J. Mag. Res. 30:185

    Google Scholar 

  • Chock, P.B., Eggers, F., Eigen, M., Winkler, R. 1977. Biophys. Chem.6:239

    PubMed  Google Scholar 

  • Cornélis, A., Laszlo, P. 1979. Sodium binding sites of gramicidin A: Sodium-23 nuclear magnetic resonance study.Biochemistry 10:2004

    Google Scholar 

  • Delville, A., Detellier, C., Laszlo, P. 1979. Determination of the correlation time for a slowly reorienting spin-3/2 nucleus: Binding of Na+ with the 5′-GMP supramolecular assembly.J. Mag. Res. 34:301

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1977. Ionic selectivity, saturation, binding and block in the gramicidin A channel: A preliminary report.In: Metal-Ligand Interactions in Organic Chemistry and Biochemistry. B. Pullman and N. Goldblum, editors. Part 2, p. 1. D. Reidel, Dordrecht-Holland

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel Cs, Rb, K, Na, Li, Tl, H and effects of anion binding.Biophys. J. 22:307

    Google Scholar 

  • Eyring, H., Urry D.W. 1963. The theory of absolute reaction rates in solution.Ber. Bunsenges. Phys. Chem. 67:731

    Google Scholar 

  • Eyring, H., Urry, D.W. 1965. Thermodynamics and chemical kinetics.In: Theoretical and Mathematical Biology. H.J. Morowitz and T.H. Waterman, editors. p. 57. Blaisdell, New York

    Google Scholar 

  • Feeney, J., Batchelor, J.G., Albrand, J.P., Roberts, G.C.K. 1979. The effects of intermediate exchange processes on the estimation of equilibrium constants by NMR.J. Magn. Reson. 33:519

    Google Scholar 

  • Hägglund, J., Enos, B., Eisenman, G. 1979. Multi-site, multibarrier, multi-occupancy models for the electrical behavior of single filing channels like those of gramicidin.Brain Res. Bull. 4:154

    PubMed  Google Scholar 

  • Hladky, S.B., Urban, B.W., Haydon, D.A. 1979. Ion movements in pores formed by gramicidin A.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, p. 89. Raven Press, New York

    Google Scholar 

  • Hubbard, P.S. 1970. Nonexponential nuclear magnetic relaxation by quadrupole interactions.J. Chem. Phys. 53:985

    Google Scholar 

  • Ishii, S., Witkop, B. 1964. Gramicidin A. II. Preparation and properties of “Seco-Gramicidin A”.J. Am. Chem. Soc. 86:1848

    Google Scholar 

  • James, T.L., Nogle, J.H. 1969.23Na nuclear magnetic resonance relaxation studies of sodium interaction with soluble RNA.Proc. Nat. Acad. Sci. USA 62:644

    PubMed  Google Scholar 

  • Johnson, F.H., Eyring, H., Polissar, M.I. 1954. Potential barriers in diffusion.In: The Kinetic Basis of Molecular Biology. Chapter 14. John Wiley & Sons, New York

    Google Scholar 

  • Koeppe, R.E., II, Berg, J.M., Hodgson, K.O., Stryer, L. 1979. Gramicidin A crystals contain two cation binding sites per channel.Nature (London) 279:723

    Google Scholar 

  • Kolb, H.-A., Läuger, P., Bamberg, E. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels.J. Membrane Biol. 20:133

    Google Scholar 

  • McBride, D., Szabo, G. 1978. Influence of double-layer and dipolar surface potentials on ionic conductance of gramicidin channels.Biophys. J. 21:A25

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental biomolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    PubMed  Google Scholar 

  • Neher, E. 1975. Ionic specificity of the gramicidin channel and the thallous ion.Biochim. Biophys. Acta 401:540

    Google Scholar 

  • Norne, J.E., Gustabsson, H., Forsen, S., Chiancone, E., Kuiper, H.A., Antonini, E. 1979. Sodium and calcium binding to panulirus interruptus hemocyanin as studied by23Na nuclear magnetic resonance.Eur. J. Biochem. 98:591

    PubMed  Google Scholar 

  • Parihar, D.P., Sharma, S.P., Verma, K.K. 1967. Studies of some active methylene compounds by thin-layer chromatography.Chromatog. 27:276

    Google Scholar 

  • Parlin, B., Eyring, H. 1954. Membrane permeability and electrical potential.In: Ion Transport Across Membranes. H.T. Clarke, editor, p. 103. Academic Press, New York

    Google Scholar 

  • Pople, J.A., Schneider, W.G., Bernstein, H.J. 1959. High resolution nuclear magnetic resonance.In: High-Resolution Nuclear Magnetic Resonance, p. 218. McGraw-Hill, New York

    Google Scholar 

  • Sandblom, J., Eisenman, G., Neher, E. 1977. Ion selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two paris of binding sites and multiple conductance states.J. Membrane Biol. 31:383

    Google Scholar 

  • Sarges, R., Witkop, B. 1964. Gramicidin A. IV. Primary sequence of valine and isoleucine gramicidin A.J. Am. Chem. Soc. 86:1862

    Google Scholar 

  • Urban, B.W., Hladky, S.B., Haydon, D.A. 1978. The kinetics of ion movements in the gramicidin channel.Fed. Proc. 37:2628

    PubMed  Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposed π(L,D) helix.Proc. Nat. Acad. Sci. USA 68:672

    PubMed  Google Scholar 

  • Urry, D.W. 1973. Polypeptide conformation and biological function β-helices (πL,D-helices) as permselective transmembrane channels.In: Conformation of Biological Molecules and Polymers — The Jerusalem Symposia on Quantum Chemistry and Biochemistry. V, p. 723. Israel Academy of Sciences, Jerusalem

    Google Scholar 

  • Urry, D.W. 1978. Basic aspects of calcium chemistry and membrane interaction: On the messenger role of calciumAnn. N.Y. Acad. Sci. 307:3

    PubMed  Google Scholar 

  • Urry, D.W., Goodall, M.C., Glickson, J.D., Mayers, D.F. 1971. The gramicidin A transmembrane channel: Characteristics of head to head dimerized π(L,D) helices.Proc. Nat. Acad. Sci. USA 68:1907

    PubMed  Google Scholar 

  • Urry, D.W., Long, M.M., Jacobs, M., Harris, R.D. 1975. Conformation and molecular mechanisms of carriers and channels.Ann. NY Acad. Sci. 264:203

    PubMed  Google Scholar 

  • Urry, D.W., Spisni, A., Khaled, M.A. 1979a. Characterization of micellar-packaged gramicidin A channels.Biochem. Biophys. Res. Commun. 88(3):940

    PubMed  Google Scholar 

  • Urry, D.W., Spisni, A., Khaled, M.A., Long, M.M., Masotti, L. 1979b. Transmembrane channels and their characterization in phospholipid structures.Int. J. Quantum Chem.: Quantum Biology Symp. N.6:289

    Google Scholar 

  • Urry, D.W., Venkatachalam, C.M., Spisni, A., Läuger, P., Khaled, M.A. 1980. Rate theory calculation of gramicidin single channel currents using NMR-derived rate constants.Proc. Nat. Acad. Sci. USA 77:2028

    PubMed  Google Scholar 

  • Weinstein, S., Wallace, B., Blout, E.R., Morrow, J.S., Veatch, W. 1979. Conformation of gramicidin A channel in phospholipid vesicles: A13C and19F nuclear magnetic resonance study.Proc. Nat. Acad. Sci. USA 76:4230

    PubMed  Google Scholar 

  • Zwolinski, B.I., Eyring, H., Reese, C.E. 1949. Diffusion and membrane permeability.J. Phys. Chem. 53:1426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W., Venkatachalam, C.M., Spisni, A. et al. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents. J. Membrain Biol. 55, 29–51 (1980). https://doi.org/10.1007/BF01926368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01926368

Keywords

Navigation