Skip to main content
Log in

A mathematical model of proximal tubule absorption

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A previous model of the mechanisms of flow through epithelia was modified and extended to include hydrostatic and osmotic pressures in the cells and in the peritubular capillaries. The differential equations for flow and concentration in each region of the proximal tubule were derived. The equations were solved numerically by a finite difference method. The principal conclusions are: (i) Cell NaCl concentration remains essentially isotonic over the pressure variations considered; (ii) channel NaCl concentration varies only a few mosmol from isotonicity, and the hydrostatic and osmotic pressure differences across the cell wall are of the same order of magnitude; (iii) both reabsorbate osmolality and pressure-induced flow are relatively insensitive to the geometry of the system; (iv) a strong equilibrating mechanism exists in the sensitivity of the reabsorbate osmolality to luminal osmolality; this mechanism is far more significant than any other parameter change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area, cm2

α:

Normalized flow, dimensionless

b :

Solute concentration gradient osmol cm−4

β:

Slope of concentration of proximal tubule reabsorbate as a function of concentration difference between lumen and surrounding interstitium, dimensionless

C :

Solute concentration osmol cm−3

\(\bar C\) :

Average membrane concentration of solute, osmol cm−3

D η :

Diffusion coefficient, cm2 sec−1

δ η :

Dimensionaless membrane parameter, 0 if variable, 1 if fixed

f :

Fractional solute absorption from proximal tubule

F :

Axial solute flow, osmol sec−1 cm−1

F :

Axial volume flow, cm3 sec−1

γ:

Normalized solute concentration, dimensionless

References

  1. Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 222:517

    PubMed  Google Scholar 

  2. Brenner, B.M., Falchuk, K.H., Keimowitz, R.I., Berliner, R.W. 1969. The relationships between peritubular capillary protein concentration and fluid reabsorption by the proximal tubule.J. Clin. Invest. 48:1519

    PubMed  Google Scholar 

  3. Brenner, B.M., Galla, J.H. 1971. Influence of post-glomerular hematocrit and protein concentration in rat nephron fluid transfer.Am. J. Physiol. 220:148

    Google Scholar 

  4. Brenner, B.M., Troy, J.L. 1971. Post-glomerular vascular protein concentration: Evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule.J. Clin. Invest. 50:336

    PubMed  Google Scholar 

  5. Burg, M.B., Grantham, J.J. 1971. Ion movements in renal tubules.In: Membranes and Ion Transport. E.E. Bittar, Editor. Vol. 3, p. 49. Wiley-Interscience, London

    Google Scholar 

  6. Burg, M.B., Orloff, J. 1968. Control of fluid absorption in the renal proximal tubule.J. Clin. Invest. 47:2016

    PubMed  Google Scholar 

  7. Diamond, J.M. 1974. Tight and leaky junction of epithelia: A perspective on kisses in the dark.Fed. Proc. 33:2220

    PubMed  Google Scholar 

  8. Diamond, J., Bossert, W.H. 1967. Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061

    PubMed  Google Scholar 

  9. Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318

    PubMed  Google Scholar 

  10. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturas gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  11. Frömter, E., Diamond, J. 1972. Route of passive ion permeability variation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  12. Gertz, K.H. 1973. Transtubulare Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Convolute der Rattenniere.Pfluegers Archiv. 276:336

    Google Scholar 

  13. Green, R., Windhager, E.E., Giebisch, G. 1974. Protein oncotic pressure effects on proximal tubular fluid movement in the rat.Am. J. Physiol. 226:265

    Google Scholar 

  14. Humphreys, M.H., Earley, L.E. 1971. The mechanism of decreased intestinal sodium and water reabsorption after acute volume expansion in the rat.J. Clin. Invest. 50:2355

    PubMed  Google Scholar 

  15. Huss, R.E., Marsh, D.J. 1975. A model of NaCl and water flow through paracellular pathways of renal proximal tubules.J. Membrane Biol. 23:305

    Google Scholar 

  16. Huss, R.E., Stephenson, J.L., Marsh, D.J. 1976. Mathematical model of proximal tubule solute and water transport.(Abstr.) Physiologist 19:236

    Google Scholar 

  17. Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N. 1966. Fluid transport in the rabbit gall bladder. A combined physiological and electron microscope study.J. Cell Biol.

  18. Martino, J.A., Earley, L.E. 1967. Demonstration of a role of physical factors as determinants of the natriuretic response to volume expansion.J. Clin. Invest. 46:1963

    PubMed  Google Scholar 

  19. Seely, J.F. 1973. Effects of peritubular oncotic pressure on rat proximal tubule electrical resistance.Kidney Int. 4:28

    PubMed  Google Scholar 

  20. Spitzer, A., Windhager, E.E. 1970. Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption.Am. J. Physiol. 218:1188

    Google Scholar 

  21. Stephenson, J.L. 1973. The mathematical theory of renal function.In: Engineering Principles in Physiology. Vol. 2, pp. 283–320. J.H.V. Brown and D.S. Gann, editors. Academic Press, New York-London

    Google Scholar 

  22. Stephenson, J.L., Tewarson, R.P., Mejia, R. 1974. Quantitative analysis of mass and energy balance in nonideal models of the renal counterflow system.Proc. Nat. Acad. Sci. USA71:1618

    PubMed  Google Scholar 

  23. Tormey, J.McD., Diamond, J.M. 1967. The ultrastructural route of fluid transport in rabbit gall bladder.J. Gen. Physiol. 50:2031

    PubMed  Google Scholar 

  24. Whittembury, G. 1967. Sobre los mecanismos de absorción en el tubo proximal del riñón.Acta Cient. Venezolana (Suppl.)3:71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, R.E., Stephenson, J.L. A mathematical model of proximal tubule absorption. J. Membrain Biol. 47, 377–399 (1979). https://doi.org/10.1007/BF01869745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869745

Keywords

Navigation