Skip to main content
Log in

Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique

I. The granular cell

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Examination of the toad urinary bladder by freeze-fracture electron-microscopy demonstrates structural specialization of the granular cell's luminal membrane compared to its basal membrane. Although both membranes appear to possess about 1,700 intramembranous particles per μm2, those of the luminal membrane tend to be significantly larger in size. In addition, the fracturing properties of the two membranes are markedly different: the majority of particles are found on fracture face B (outer membrane face), in the case of the luminal membrane, and the majority are found on fracture face A (inner membrane face), in the case of the basal membrane. While the two fracture faces of the basal membrane possess a similar distribution of particle sizes, in the case of the luminal membrane the B face was found to possess particles generally larger than those found on the A face. It was established that the probability of luminal membrane particles adhering to face B instead of face A is closely correlated with the size of the particle. The structural specialization of the granular cell's luminal membrane may have an important relationship to the characteristic permeability properties of this membrane and the capacity of this cell type to respond physiologically to the hormone vasopressin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Branton, D. 1966. Fracture faces of frozen membranes.Proc. Nat. Acad. Sci. U.S.A. 55:1048

    Google Scholar 

  • Branton, D. 1967. Fracture faces of frozen myelin.Exp. Cell Res. 45:703

    PubMed  Google Scholar 

  • Branton, D. 1969. Membrane structure.Annu. Rev. Pl. Physiol. 20:209

    Google Scholar 

  • Branton, D., Deamer, D.W. 1972. Membrane structure.Protoplasmatologia II/E/1:1

    Google Scholar 

  • Carasso, N., Favard, P., Valérien, J. 1962. Variations des ultrastructures dans les cellules épithéliaes de la vessie du crapaud après stimulation par l'harmone neurohypophysaire.J. Microscopie 1:143

    Google Scholar 

  • Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tiss. Res. 152:129

    Google Scholar 

  • Choi, J.K. 1963. The fine structure of the urinary bladder of the toad,Bufo marinus.J. Cell Biol. 16:53

    PubMed  Google Scholar 

  • Civan, M.M., Frazier, H.S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589

    PubMed  Google Scholar 

  • Danon, D., Strum, J.M., Edelman, I.S. 1974. The membrane surfaces of the toad bladder: Scanning and transmission electron-microscopy.J. Membrane Biol. 16:279

    Google Scholar 

  • Davis, W.L., Goodman, D.B.P., Martin, J.H., Matthews, J.L., Rasmussen, H. 1974. Vasopressin-induced changes in the toad urinary bladder epithelial surface.J. Cell Biol. 61:544

    PubMed  Google Scholar 

  • Dempsey, G.P., Bullivant, S., Watkins, W.B. 1973. Endothelial cell membranes: Polarity of particles as seen by freeze-fracturing.Science 179:190

    PubMed  Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  • Gfeller, E., Walser, M. 1971. Stretch-induced changes in geometry and ultrastructure of transporting surfaces of toad bladder.J. Membrane Biol. 4:16

    Google Scholar 

  • Glover, A.J., Garvitch, Z.S. 1974. The freezing rate of freeze-etch specimens for electron microscopy.Cryobiology 11:248

    PubMed  Google Scholar 

  • Keller, A.R. 1963. A histochemical study of the toad urinary bladder.Anat. Rec. 147:367

    PubMed  Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127

    Google Scholar 

  • MacLennan, D.H., Seeman, P., Iles, G.H., Yip, C.C. 1971. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum.J. Biol. Chem. 246:2702

    PubMed  Google Scholar 

  • Masur, S.K., Holtzman, E., Walter, R. 1972. Hormone-stimulated exocytosis in the toad urinary bladder.J. Cell Biol. 52:211

    PubMed  Google Scholar 

  • Misra, D.N., Das Gupta, N.N. 1966. Distortion in dimensions produced by shadowing for electron microscopy.J. R. Micr. Soc. 84:373

    Google Scholar 

  • Ojakian, G.K., Satir, P. 1974. Particle movements in chloroplast membranes: Quantitative measurements of membrane fluidity by the freeze-fracture technique.Proc. Nat. Acad. Sci. U.S.A. 71:2052

    Google Scholar 

  • Orci, L., Perrelet, A. 1973. Membrane-associated particels: Increase at sites of pinocytosis demonstrated by freeze etching.Science 181:868

    PubMed  Google Scholar 

  • Peachey, L.D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529

    PubMed  Google Scholar 

  • Pinto da Silva, P. 1972. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation.J. Cell Biol. 53:777

    PubMed  Google Scholar 

  • Pinto da Silva, P. 1973. Membrane intercalated particles in human erythrocyte ghosts: Sites of preferred passage of water molecules at low temperature.Proc. Nat. Acad. Sci. U.S.A. 70:1339

    Google Scholar 

  • Pinto da Silva, P., Douglas, S.D., Branton, D. 1971. Localization of A antigen sites on human erythrocyte ghosts.Nature 232:194

    PubMed  Google Scholar 

  • Porter, K.R., Kenyon, K., Badenhausen, S. 1967. Specializations of the unit membrane.Protoplasma 63:262

    PubMed  Google Scholar 

  • Satir, B., Schooley, C., Satir, P. 1973. Membrane fusion in a model system. Mucocyst secretion inTetrahymena.J. Cell Biol. 56:153

    PubMed  Google Scholar 

  • Satir, P., Satir, B. 1974. Design and function of site-specific particle arrays in the cell membrane.In: Coldspring Harbor Meeting: Control of Cell Proliferation. p. 233

  • Staehelin, L.A. 1968. The interpretation of freeze-etched artificial and biological membranes.J. Ultrastruct. Res. 22:326

    PubMed  Google Scholar 

  • Staehelin, L.A., Chlapowski, F.J., Bonneville, M.A. 1972. Luminal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images.J. Cell Biol. 53:73

    PubMed  Google Scholar 

  • Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347

    PubMed  Google Scholar 

  • Tillack, T.W., Scott, R.E., Marchesi, V.T. 1972. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles.J. Exp. Med. 135:1209

    PubMed  Google Scholar 

  • Tourtellotte, M.E., Zupnik, J.S. 1973. Freeze-fracturedAcholeplasma laidlawii membranes: Nature of particles observed.Science 179:84

    PubMed  Google Scholar 

  • Vergara, J., Zambrano, F., Robertson, J.D., Elrod, H. 1974. Isolation and characterization of luminal membranes from urinary bladder.J. Cell Biol. 61:83

    Google Scholar 

  • Wade, J.B., Revel, J.P., DiScala, V.A. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder.Amer. J. Physiol. 224:407

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, J.B., DiScala, V.A. & Karnovsky, M.J. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. J. Membrain Biol. 22, 385–402 (1975). https://doi.org/10.1007/BF01868182

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868182

Keywords

Navigation