Skip to main content
Log in

Calmodulin defects cause the loss of Ca2+-dependent K+ currents in two pantophobiac mutants ofParamecium tetraurelia

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Two behavioral mutants ofParamecium tetraurelia, pantophobiacs A1 and A2, have single amino acid defects in the structure of calmodulin. The mutants exhibit several major ion current defects under voltage clamp: (i) the Ca2+-dependent K+ current activated upon depolarization ofParamecium is greatly reduced or missing in both mutants, (ii) both mutants lack a Ca2+-dependent K+ current activated upon hyperpolarization, and (iii) the Ca2+-dependent Na+ current is significantly smaller in pantophobiac A1 compared with the wild type, whereas this current is slightly increased in pantophobiac A2.

Other, minor defects include a reduction in peak amplitude of the depolarization-activated Ca2+ current in pantophobiac A2, increased rates of voltage-dependent inactivation of this Ca2+ current in both pantophobiac A1 and pantophobiac A2, and an increase in the time required for the hyperpolarization-activated Ca2+ current to recover from inactivation in the pantophobiacs.

The diversity of the pantophobiac mutations' effects on ion current function may indicate specific associations of calmodulin with a variety of Ca2+-related ion channel species inParamecium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blatz, A.L., Magleby, K.L. 1987. Calcium-activated potassium channels.Trends Neurosci.11:463–467

    Google Scholar 

  • Brehm, P., Eckert, R. 1978. Calcium entry leads to inactivation of calcium channel inParamecium.Science 202:1203–1206

    PubMed  Google Scholar 

  • Chad, J., Kalman, D., Armstrong, D. 1987. The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels.In: Cell Calcium and the Control of Membrane Transport. L.J. Mandel and D.C. Eaton, editors. pp. 153–186. Rockefeller University Press, New York

    Google Scholar 

  • Dunlap, K. 1977. Localization of calcium channels inParamecium caudatum.J. Physiol. (London) 271:119–133

    Google Scholar 

  • Eckert, R., Chad, J.E. 1984. Inactivation of Ca channels.Prog. Biophys. Mol. Biol. 46:215–267

    Google Scholar 

  • Evans, T.C., Nelson, D.L. 1989. The cilia ofParamecium tetraurelia contain both Ca2+-dependent and Ca2+-inhibitable calmodulin-binding proteins.Biochem. J. 259:385–396

    PubMed  Google Scholar 

  • Hennessey, T.M. 1987. A novel calcium current is activated by hyperpolarization ofParamecium tetraurelia.Soc. Neurosci. Abstr. 13:108

    Google Scholar 

  • Hennessey, T.M., Kung, C. 1984. An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current inParamecium caudatum.J. Exp. Biol. 110:169–181

    PubMed  Google Scholar 

  • Hennessey, T.M., Kung, C. 1985. Slow inactivation of the calcium current ofParamecium is dependent on voltage and not internal calcium.J. Physiol. (London) 365:165–179

    Google Scholar 

  • Hinrichsen, R.D., Amberger, E., Saimi, Y., Burgess-Cassler, A., Kung, C. 1985. Genetic analysis of mutants with a reduced Ca2+-dependent K+ current inParamecium tetraurelia.Genetics 111:433–445

    PubMed  Google Scholar 

  • Hinrichsen R.D., Burgess-Cassler, A., Soltvedt, B.C., Hennessey, T., Kung, C. 1986. Restoration by calmodulin of a Ca2+-dependent K+ current missing in a mutant ofParamecium.Science 232:503–506

    PubMed  Google Scholar 

  • Johnson, J.D. 1984. A calmodulin-like Ca2+ receptor in the Ca2+ channel.Biophys. J. 45:134–136

    Google Scholar 

  • Klaerke, D.A., Petersen, J., Jørgensen, P.L. 1987. Purification of a Ca2+-activated K+ channel protein on calmodulin affinity columns after detergent solubilization of luminal membranes from outer renal medulla.FEBS Lett. 216:211–216

    PubMed  Google Scholar 

  • Klee, C.B., Crouch, T.H., Richman, P.G. 1980. Calmodulin.Annu. Rev. Biochem. 49:489–515

    PubMed  Google Scholar 

  • Lackington, I., Orrego, F. 1981. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs.FEBS Lett. 133:103–106

    Article  PubMed  Google Scholar 

  • Larsen, F.L., Vincenzi, F.K. 1979. Calcium transport across the plasma membrane: Stimulation by calmodulin.Science 204:306–309

    PubMed  Google Scholar 

  • Levitan, I.B. 1985. Phosphorylation of ion channels.J. Membrane Biol. 87:177–190

    Google Scholar 

  • Lukas, T.J., Wallen-Friedman, M.A., Kung, C., Watterson, D.M. 1989. In vivo mutations of calmodulin: AParamecium ion-channel mutant has an isoleucine to threonine change at residue 136 and an altered methylation state at residue 115.Proc. Natl. Acad. Sci. USA 86:7331–7335

    PubMed  Google Scholar 

  • Machemer, H. 1988. Motor control of cilia.In:Paramecium. H.-D. Görtz, editor. pp. 217–235. Springer-Verlag, Berlin

    Google Scholar 

  • Machemer, H., Ogura, A. 1979. Ionic conductances of membranes in ciliated and deciliatedParamecium.J. Physiol. (London) 296:49–60

    Google Scholar 

  • Martinac, B., Saimi, Y., Gustin, M.C., Kung, C. 1988. Ion channels of three microbes:Paramecium, yeast andEscherichia coli.In: Calcium and Ion Channel Regulation. A.D. Grinnell, D. Armstrong, and M.B. Jackson, editors. pp. 415–430. Plenum, New York

    Google Scholar 

  • Moczydlowski, E., Alvarez, O., Vergara, C., Latorre, R. 1985. Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers.J. Membrane Biol. 83:273–282

    Google Scholar 

  • Nairn, A.C., Hemmings, H.C. Jr., Greengard, P. 1985. Protein kinases in the brain.Annu. Rev. Biochem. 54:931–976

    PubMed  Google Scholar 

  • Okada, Y., Yada, T., Ohno-Shosaku, T., Oiki, S. 1987. Evidence for the involvement of calmodulin in the operation of Ca-activated K channels in mouse fibroblasts.J. Membrane Biol. 96:121–128

    Google Scholar 

  • Onozuka, M., Furuichi, H., Kishii, K., Imai, S. 1987. Calmodulin in the activation process of calcium-dependent potassium channels inEuhadra neurones.Comp. Biochem. Physiol. 86A:589–593

    Google Scholar 

  • Pape, L., Kristensen, B.I. 1984. A calmodulin activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles.Biochim. Biophys. Acta 770:1–6

    PubMed  Google Scholar 

  • Pershadsingh, H.A., Landt, M., McDonald, J.M. 1980a. Calmodulin-sensitive ATP-dependent Ca2+ transport across adipocyte plasma membranes.J. Biol. Chem. 255:8983–8986

    PubMed  Google Scholar 

  • Pershadsingh, H.A., McDaniel, M.L., Landt, M., Bry, C.G., Lacy, P.E., McDonald, J.M. 1980b. Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+ transport in islet cell plasma membrane.Nature (London) 288:492–495

    Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  • Plishker, G.A. 1984. Phenothiazine inhibition of calmodulin stimulates calcium-dependent potassium efflux in human red blood cells.Cell Calcium 5:177–185

    Article  PubMed  Google Scholar 

  • Preston, R.R., Saimi, Y., Kung, C. 1990. Evidence for two K+ channels activated upon hyperpolarization ofParamecium tetraurelia.J. Membrane Biol. 115:41–50

    Google Scholar 

  • Saimi, Y. 1986. Calcium-dependent sodium currents inParamecium: Mutational manipulations and effects of hyper-and depolarization.J. Membrane Biol. 92:227–236

    Google Scholar 

  • Saimi, Y., Hinrichsen, R.D., Forte, M., Kung, C. 1983. Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation inParamecium.Proc. Natl. Acad. Sci. USA 80:5112–5116

    PubMed  Google Scholar 

  • Saimi, Y., Kung, C. 1987. Behavioral genetics ofParamecium.Annu. Rev. Genet. 21:47–65

    PubMed  Google Scholar 

  • Saimi, Y., Martinac, B. 1989. A calcium-dependent potassium channel inParamecium studied under patch clamp.J. Membrane Biol. 112:79–89

    Google Scholar 

  • Satow, Y. 1978. Internal calcium concentration and potassium permeability inParamecium.J. Neurobiol. 9:81–91

    PubMed  Google Scholar 

  • Satow, Y. Kung, C. 1980a. Ca-induced K+-outward current inParamecium tetraurelia.J. Exp. Biol. 88:293–303

    PubMed  Google Scholar 

  • Satow, Y., Kung, C. 1980b. Membrane currents of pawn mutants of thepwA group inParamecium tetraurelia.J. Exp. Biol. 84:57–71

    PubMed  Google Scholar 

  • Schaefer, W.H., Hinrichsen R.D., Burgess-Cassler, A., Kung, C., Blair, I.A., Watterson, D.M. 1987a. A mutantParamecium with a defective calcium-dependent potassium conductance has an altered calmodulin: Non-lethal selective alteration in calmodulin regulation.Proc. Natl. Acad. Sci. USA 84:3931–3935

    PubMed  Google Scholar 

  • Schaefer, W.H., Lukas, T.J., Blair, I.A., Schultz, J.E., Watterson, D.M. 1987b. Amino acid sequence of a novel calmodulin fromParamecium tetraurelia that contains dimethyllysine in the first domain.J. Biol. Chem. 262:1025–1029

    PubMed  Google Scholar 

  • Sonneborn, T.M. 1975.Paramecium aurelia.In: Handbook of Genetics. R.C. King, editor. Vol. 2, pp. 469–594. Plenum, New York

    Google Scholar 

  • Stoclet, J.-C., Gerard, D., Kilhoffer, M.-C., Lugnier, C., Miller, R., Schaeffer, P. 1987. Calmodulin and its role in intracellular calcium regulation.Prog. Neurobiol. 29:321–364

    PubMed  Google Scholar 

  • Takahashi, M., Ogura, A., Maruyama, M. 1983. Inhibition of transmitter release by TI233, a calmodulin antagonist, from clonal neural cells and a presumed site of action.Biochem. Pharmacol. 32:249–252

    PubMed  Google Scholar 

  • Wallen-Friedman, M.A. 1988. An ion current mutant ofParamecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin. Ph.D. Thesis. University of Wisconsin, Madison (WI)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, R.R., Wallen-Friedman, M.A., Saimi, Y. et al. Calmodulin defects cause the loss of Ca2+-dependent K+ currents in two pantophobiac mutants ofParamecium tetraurelia . J. Membrain Biol. 115, 51–60 (1990). https://doi.org/10.1007/BF01869105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869105

Key Words

Navigation