Skip to main content
Log in

Preparation techniques and materials for long term stable SOFC - Single cell membranes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Chemical reactions and thermal expansion mismatch between electrodes and electrolyte may reduce the long term stability of SOFC-single cells and can cause undesirable thermomechanical stresses. In solid electrolyte cells the formation of MnAl2O4 was detected between the air electrode (La0.5Ca0.5MnO3) and the electrolyte (YSZ/Al2O3) in a 5 µm diffusion zone within the electrolyte. The electronically conducting spinel MnAl2O4 is thought to be the main factor for delamination of the air electrode under anodic current (electrolysis). The performance and long term stability of the air electrode/electrolyte interface can be improved for electrolysis conditions by an additional intermediate YSZ-layer made by sol-gel technique. The mismatch in thermal expansion between the electrode materials and the electrolyte have been eliminated via optimized doping and by adding small amounts of a silicate-based substituent with a very low thermal expansion co-efficient for the cathode and anode, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stolten, W. Schäfer, Oxidkeramische Brennstoffzelle, Handbuch der Keramik, Kapitel 8.5.2.1, Elektronik und Elektrotechnik, Editor J. Kriegesmann, Deutscher Wirtschaftsdienst, April 1994.

  2. M. Fandel, J. Höschele, W. Schäfer, R. Schmidberger, “Properties of Ca-doped LaMnO3”, Euroceramics I, Vol. 2, Editors: G. de With, R. A. Terpstra, R. Metselaar, pp 2236–2240, Elsevier, London 1989.

    Google Scholar 

  3. M. Kurbjuhn, W. Schäfer, D. Stolten, “Production of Zirconia Based Electrochemical Cells by Tape Casting and Screen-printing”, in: Euroceramics II, Vol. 3; Editors: G. Ziegler, H. Hausner, pp. 2137–2147, Köln 1991.

  4. W. Schäfer, H. Geier, G. Lindemann, D. Stolten, “Electrolytes and Electrodes for Solid Oxide Fuel Cells with Improved Long-Term Stability”, 14th Risø Int. Symp. on Mat. Sci., Sept. 6–10, 1993, Roskilde, Denmark.

  5. D. Stolten, E. Monreal, W. Schäfer, “Soft Glass Ceramic Sealing for gastight SOFC stacks”, 1st Europ. Conf. on SOFC, Oct. 3–7, 1994, Lucerne/Switzerland.

  6. N. Q. Minh, “Ceramic Fuel Cells”, J. Am. Ceram. Soc.76, 563 (1993).

    Article  CAS  Google Scholar 

  7. J. Van Herle, K. Ravindranathan Thampi, “A remark on the use of a reference electrode in SOFC testing”, in Advanced Fuel Cells Programme, Annex II, Modelling and evaluation of advanced solid oxide fuel cells, Instrumentation & in-situ Diagnostics B5 Activity Meeting, IEA task report, Chexbres, 16–17 June 1993, p. 62–67.

  8. A. Yamashita, H. Tsukuda, T. Hashimoto, “Anodic and cathodic electrode reaction at La1−xSrxMnO3”, First European Solid Oxide Fuell Cell Forum, Editor: U. Bossel, 3–7 October, Lucerne, Switzerland 1994, p. 661–669.

  9. A. Kaiser, D. Stolten, “Sol-Gel-Beschichtungen für SOFC-Electrolyte”, Handbuch der technischen keramischen Werkstoffe, Elektronik und Elektrotechnik, Kapitel 8.5.2.1, Seite 1–15, Deutscher Wirtschaftsdienst, Sept. 1996.

  10. M. Shane, M. L. Mecartney, “Sol-Gel synthesis of zirconia barrier coatings”, J. Mat. Sci.25, 1537–1544 (1990).

    Article  CAS  Google Scholar 

  11. A. Kaiser, E. Monreal, A. Koch, D. Stolten, “Reactions at the Interface La0.5Ca0.5MnO3-YSZ/Al2O3 under anodic current”, Ionics2, 184 (1996).

    Article  CAS  Google Scholar 

  12. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, “Chemical Thermodynamic Stabilities of the Interface”, Science and Technology of Zirconia V, editors: S. P. S. Badwal, M. J. Bannister, R. H. J. Hannink, Tenomic Publishing CO, Inc., Lancaster, Pennsylvannia, USA 1993, p. 752–763.

    Google Scholar 

  13. H. Yokokawa, T. Horita, N. Sakai, T. Kawada, M. Dokiya, “Thermodynamic Considerations on plausible effect of oxygen flow on morphology of reaction products at the YSZ/Lanthanum Manganite Interface in Solid Oxide Fuel cells”, First European Solid Oxide Fuel Cell Forum, editor: U. Bossel, Lucerne, Switzerland, 3–7 Oct. 1994, p. 425–434.

  14. O. Yamamoto, Y. Takeda, R. Kanno, T. Kojima, “Stability of perovskite oxide electrode with stabilized zirconia”, J. Electrochem. Soc.89, 242 (1989).

    Google Scholar 

  15. D. M. Tricker, W. M. Stobbs, “Microstructural aspects of Lanthanum Zirconate formation”, in “High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors”, Risø International Laboratory, Roskilde, 1993, p. 453–460.

    Google Scholar 

  16. A. V. Vikar, J. Am. Ceram. Soc.73, 3382 (1990).

    Google Scholar 

  17. D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee, and F. C. Mrazek, “Conductivity of porous Ni/ZrO2-Y2O3 cermets”, J. Electrochem. Soc.134, 2141 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, A., Monreal, E. & Stolten, D. Preparation techniques and materials for long term stable SOFC - Single cell membranes. Ionics 3, 143–148 (1997). https://doi.org/10.1007/BF02375538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375538

Keywords

Navigation