Skip to main content
Log in

Non-Abelian color dielectric - towards the effective model of the low energy QCD

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Lattice motivated triplet color scalar field theory is analyzed. We consider non-minimal as well as covariant derivative coupling with SU(2) gauge fields. Field configurations generated by external electric sources are presented. Moreover non-Abelian magnetic monopoles are found. Dependence on the spatial coordinates in the obtained solutions is identical as in the usual Abelian case. We show also that after a decomposition of the fields a modified Faddeev-Niemi action can be obtained. It contains explicit O(3) symmetry breaking term parameterized by the condensate of an isoscalar field. Due to that Goldstone bosons observed in the original Faddeev-Niemi model are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, New York 1983)

  2. H.G. Dosch, Phys. Lett. B 190, 555 (1987); H.G. Dosch, Yu. Simonov, Phys. Lett. B 205, 339 (1988)

    Google Scholar 

  3. S.V. Shabanov, Phys. Lett. B 458, 322 (1999); Phys. Lett. B 463, 263 (1999)

    Article  Google Scholar 

  4. L.D. Faddeev, A.J. Niemi, Phys. Rev. Lett. 82, 1624 (1999)

    Article  Google Scholar 

  5. L.D. Faddeev, A.J. Niemi, Nature 387, 58 (1997)

    Article  Google Scholar 

  6. H.B. Nielsen, A.Patkos, Nucl. Phys. B 195, 137 (1982)

    Article  Google Scholar 

  7. J.F. Mathiot, G. Chanfray, H.J. Pirner, Nucl. Phys. A 500, 605 (1989)

    Article  Google Scholar 

  8. R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1694 (1977); Phys. Rev. D 18, 2623 (1978)

    Article  Google Scholar 

  9. R. Dick, L.P. Fulcher, Eur. Phys. J. C 9, 271 (1999); R. Dick, Eur. Phys. J. C 6, 701 (1999)

    Article  Google Scholar 

  10. G. Mack, Nucl. Phys. B 235, 197 (1984)

    Article  Google Scholar 

  11. H. Arodź, H.J. Pirner, Acta Phys. Pol. B 30, 3895 (1999)

    Google Scholar 

  12. S. Dalley, B. van de Sande, Phys. Rev. D 56, 7917 (1997)

    Article  Google Scholar 

  13. M. Ślusarczyk, A. Wereszczyński, Eur. Phys. J. C 23, 145 (2002); Acta Phys. Pol. B 32, 2911 (2001); Eur. Phys. J. C 28, 151 (2003); Eur. Phys. J. C 30, 537 (2003)

    Article  Google Scholar 

  14. R. Dick, Phys. Lett. B 397, 193 (1996); R. Dick, Phys. Lett. B 409, 321 (1997)

    Article  Google Scholar 

  15. M. Chabab, R. Markazi, E.H. Saidi, Eur. Phys. J. C 13, 543 (2000); M. Chabab, L. Sanhaji, hep-th/0311096

    Article  Google Scholar 

  16. D. Bazeia et al. , hep-th/0210289; Mod. Phys. Lett. A 17, 1945 (2002)

    Google Scholar 

  17. L. Motyka, K. Zalewski, Z. Phys. C 69, 342 (1996); K. Zalewski, Acta Phys. Pol. B 29, 2535 (1998)

    Article  Google Scholar 

  18. A. Martin, Phys. Lett. B 100, 511 (1981)

    Article  Google Scholar 

  19. A.V. Nesterenko, hep-ph/0307283; hep-ph/0305091; hep-ph/0308288

  20. T.T. Wu, C.N. Yang, in Properties of Matter Under Unusual Conditions, edited by H. Mark, S. Fernbach (Interscience, New York, 1969)

  21. F.E. Close, A. Kirk, Eur. Phys. J. C 21, 531 (2001); UKQCD Collaboration (A. Hart et al. ), Phys. Rev. D 65, 034502 (2002); N. Ishii, M. Sugunuma, H. Matsufuru, Phys. Rev. D 66, 094506 (2002)

    Google Scholar 

  22. T. Burch, K. Orginos, D. Toussaint, Phys. Rev. D 64, 074505 (2001); Nucl. Phys. Proc. Suppl. 106, 382 (2002); K.J. Juge, J. Kuti, C. Morningstar, nucl-th/0307116; C. Michael, hep-ph/0308293

    Article  Google Scholar 

  23. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1961)

    Google Scholar 

  24. Y.M. Cho, Phys. Rev. D 21, 1080 (1980); Phys. Rev. D 23, 2415 (1981)

    Article  Google Scholar 

  25. J. Hietarinta, P. Salo, Phys. Lett. B 451, 60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997); Phys. Rev. Lett. 81, 4798 (1998)

    Article  Google Scholar 

  27. Y. Nambu, Phys. Rev. D 10, 4262 (1974); S. Mandelstam, Phys. Rep. C 23, 245 (1976); A. Polyakov, Nucl. Phys. B 120, 429 (1977); G. ‘t Hooft, Nucl. Phys. B 190, 455 (1981)

    Article  Google Scholar 

  28. L. Dittmann, T. Heinzl, A. Wipf, Nucl. Phys. (Proc. Suppl.) B 106, 649 (2002); Nucl. Phys. (Proc. Suppl.) B 108, 63 (2002)

    Article  Google Scholar 

  29. L. Faddeev, A.J. Niemi, Phys. Lett. B 525, 195 (2002)

    Article  MATH  Google Scholar 

  30. J. Sánchez-Guillén, Phys. Lett. B 548, 252 (2002); Erratum Phys. Lett. B 550, 220 (2002)

    Article  Google Scholar 

  31. D. Bazeia, F.A. Brito, W. Freire, R.F. Ribeiro, hep-th/0311160

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wereszczyński.

Additional information

Received: 23 January 2004, Revised: 29 July 2004, Published online: 11 January 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wereszczyński, A., Ślusarczyk, M. Non-Abelian color dielectric - towards the effective model of the low energy QCD. Eur. Phys. J. C 39, 185–193 (2005). https://doi.org/10.1140/epjc/s2004-02087-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02087-8

Keywords

Navigation