Skip to main content
Log in

Jet production and fragmentation ine + e annihilation at 12–43 GeV

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We present the general properties of jets produced bye + e annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee + e annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofx p=2p/W are presented; scale breaking is observed at the level of 25%. The quantityx p dδ/dx p is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e + e Q \(\bar Q\) for quark masses up to 5<m Q <20.3 GeV (|e Q |=2/3) and 7<m Q <19 GeV (|e Q |=1/3). The comparison of 1/σtot dδ/dp T measured at 14, 22 and 34 GeV suggests that hard gluon bremsstrahlung contributes mainly to transverse momenta larger than 0.5 GeV/c. The rapidity distribution forW≧22 GeV shows an enhancement away fromy=0 which corresponds to an increase in yield of 10–15% compared to the centre region (y=0). The enhancement probably results from heavy quark production and gluon bremsstrahlung. The particle flux around the jet axis shows with increasing c.m. energy a rapidly growing number of particles collimated around the jet axis, while at large angles to the jet axis almost noW dependence is observed. For fixed longitudinal momentump approximate “fan invariance” is seen: The shape of the angular distribution around the jet axis is almost independent ofW. The collimation depends strongly onp . For smallp ,p <0.2 GeV/c, isotropy is observed. With increasingp the particles tend to be emitted closer and closer to the jet axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TASSO Collab. R. Brandelik et al.: Phys. Lett.86B, 243 (1979)

    Google Scholar 

  2. MARK-J Collab. D.P. Barber et al.: Phys. Rev. Lett.43, 830 (1979); PLUTO Collab. Ch. Berger et al.: Phys. Lett.86B, 418 (1979); JADE Collab. W. Bartel et al.: Phys. Lett.91B, 142 (1980)

    Google Scholar 

  3. TASSO Collab. R. Brandelik et al.: Phys. Lett.94B, 444 (1980);113B, 98 (1982); TASSO Collab. M. Althoff et al.: Z. Phys. C — Particles and Fields17, 5 (1983)

    Google Scholar 

  4. TASSO Collab. R. Brandelik et al.: Phys. Lett.105B, 75 (1981);108B, 71 (1982); M. Althoff et al.: Phys. Lett.126B, 493 (1983);130B, 449 (1983); DESY Report 83-121 (1983)

    Google Scholar 

  5. P. Hoyer et al.: Nucl. Phys.B161, 34 (1979)

    Google Scholar 

  6. A. Ali et al.: Z. Phys. C — Particles and Fields2, 33 (1979)

    Google Scholar 

  7. B. Anderson, G. Gustafson, T. Sjöstrand: Phys. Lett.94B, 211 (1980)

    Google Scholar 

  8. TASSO Collab. R. Brandelik et al.: Phys. Lett.83B, 261 (1979); Z. Phys. C — Particles and Fields4, 87 (1980)

    Google Scholar 

  9. TASSO Collab. R. Brandelik et al.: Phys. Lett.113B, 499 (1982)

    Google Scholar 

  10. R. D. Field, R. P. Feynman: Nucl. Phys.B136, 1 (1978); C. Peterson et al.: Phys. Rev.D27, 105 (1983)

    Google Scholar 

  11. F.A. Berends, R. Kleiss: Nucl. Phys.B177, 237 (1981);B178, 141 (1981)

    Google Scholar 

  12. TASSO Collab. M. Althoff et al.: publication in preparation

  13. Experiments cited in P. Söding, G. Wolf: Ann. Rev. Nucl. Part. Sci.41, 231 (1981), and recent data from J.L. Siegrist et al.: Phys. Rev.D26, 969 (1982); LENA Collab. B. Niczyporuk et al.: Z. Phys. C — Particles and Fields15, 299 (1982); H. Albrecht et al.: Phys. Lett.116B, 383 (1982); JADE Collab. W. Bartel et al.: DESY Report 83-050 (1983); MARK-J Collab. B. Adeva et al.: Phys. Rev. Lett.50, 799 (1983)

    Google Scholar 

  14. C. Bacci et al.: Phys. Lett.86B, 234 (1979); LENA Collab. B. Niczyporuk et al.: Z. Phys. C — Particles and Fields9, 1 (1981); M.S. Alam et al.: Phys. Rev. Lett.49, 357 (1982); PLUTO Collab. Ch. Berger et al.: paper in preparation

    Google Scholar 

  15. JADE Collab. W. Bartel et al.: DESY Report 83-042 (1983)

  16. G. Wolf: Proc. EPS Int. Conf. on High Energy Physics, p. 220. Geneva, Switzerland, (1979)

  17. JADE Collab. W. Bartel et al.: Phys. Lett.88B, 171 (1979)

    Google Scholar 

  18. TASSO Collab. R. Brandelik et al.: Phys. Lett89B, 418 (1980)

    Google Scholar 

  19. G. Wolf: Proc. XI Int. Symp. Multiparticle Dynamics (Bruges, 1980), eds E. de Wolf, F. Verbeure, p. 283; DESY Report 80-85 (1980)

  20. E. Albini et al.: Nuovo Cimento32A, 101 (1976)

    Google Scholar 

  21. W. Thomé et al.: Nucl. Phys.B129, 365 (1977)

    Google Scholar 

  22. J. Salava, V. Simak: Nucl. Phys.69B, 15 (1974)

    Google Scholar 

  23. R. Stenbacka et al.: Nuovo Cimento51A, 63 (1979); V.V. Ammosov et al.: Phys. Lett.42B, 519 (1972); G.A. Akopdjanov et al.: Nucl. Phys.B75, 401 (1974); J. Erwin et al.: Phys. Rev. Lett.32, 254 (1974)

    Google Scholar 

  24. UA5 Collab. K. Alpgård et al.: Phys. Lett.107B, 315 (1981),121B, 209 (1983)

    Google Scholar 

  25. M. Basile et al.: Phys. Lett.92B, 367 (1980);95B, 311 (1980)

    Google Scholar 

  26. J.D. Bjorken, S.J. Brodsky: Phys. Rev.D1, 1416 (1970) For a recent analysis see W. Ochs: MPI Munich preprint, MPI-PAE 118 (1983)

    Google Scholar 

  27. A. Bassetto, M. Ciafaloni, G. Marchesini: Phys. Lett.83B, 207 (1978)

    Google Scholar 

  28. K. Konishi: Rutherford Report RL 79-035 (1979)

  29. W. Furmanski, S. Pokorski Nucl. Phys.155B, 253 (1979)

    Google Scholar 

  30. A.H. Mueller: Phys. Lett.104B, 161 (1981); Nucl. Phys.B213, 85 (1983); Columbia University Reports CU-TP-247 (1982) and CU-TP-249 (1982)

    Google Scholar 

  31. Z. Koba, H.B. Nielsen, P. Olesen: Nucl. Phys.B40, 317 (1972)

    Google Scholar 

  32. TASSO Collab. R. Brandelik et al.: Phys. Lett.114B, 65 (1982)

    Google Scholar 

  33. J.F. Patrick et al.: Phys. Rev. Lett.49, 1232 (1982)

    Google Scholar 

  34. J.D. Bjorken, J. Kogut: Phys. Rev.D8, 1341 (1973)

    Google Scholar 

  35. A. Bassetto, M. Ciafaloni, G. Marchesini, A.H. Mueller: Nucl. Phys.B207, 189 (1982)

    Google Scholar 

  36. Y.L. Dokhshitzer, V.S. Fadin, V.A. Khoze: Phys. Lett.115B, 242 (1982); see also B.R. Webber: CERN Report TH 3713 (1983)

    Google Scholar 

  37. J.D. Bjorken, S.J., Brodsky: Phys. Rev.D1, 1416 (1970)

    Google Scholar 

  38. S. Brandt et al.: Phys. Lett.12, 57 (1964); E. Fahri: Phys. Rev. Lett.39, 1587 (1977)

    Google Scholar 

  39. S. Yamada: Rapporteur talk, Int. Symp. Lepton and Photon Interactions at High Energies, Cornell, USA, 1983

  40. PLUTO Collab. Ch. Berger et al.: DESY Report 83-054 (1983)

  41. C. Bromberg et al.: Phys. Rev. Lett.31, 1563, (1973); C. Bromberg et al.: Phys. Rev.D9, 1864 (1974); J. Whitmore et al.: Phys. Rev.D10, 273 (1974); A. Firestone et al.: Phys. Rev.D10, 2080 (1974); W.M. Morse et al.: Phys. Rev.D15, 66 (1977); C.P. Ward et al.: Nucl. Phys.B153, 299 (1979)

    Google Scholar 

  42. UA5 Collab. K. Alpgård et al.: Phys. Lett.107B, 310 (1981)

    Google Scholar 

  43. UA1 Collab. G. Arnison et al.: Phys. Lett.123B, 108 (1983)

    Google Scholar 

  44. This study was triggered by H. Bøggild

Download references

Author information

Authors and Affiliations

Authors

Consortia

Additional information

Supported by the Konrad-Adenauer-Stiftung

Supported by the Deutsches Bundesministerium für Forschung und Technologie

Supported by the UK Science and Engineering Research Council

Supported by the Minerva Gesellschaft für Forschung mbH

Supported by the US Department of Energy contract DEAC02-76ER00881

Rights and permissions

Reprints and permissions

About this article

Cite this article

TASSO Collaboration., Althoff, M., Braunschweig, W. et al. Jet production and fragmentation ine + e annihilation at 12–43 GeV. Z. Phys. C - Particles and Fields 22, 307–340 (1984). https://doi.org/10.1007/BF01547419

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01547419

Keywords

Navigation