Skip to main content
Log in

Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper describes an inverse analysis method using hierarchical neural networks and computational mechanics, and its application to the quantitative nondestructive evaluation with the ultrasonic method. The present method consists of three subprocesses. First, by parametrically changing the location and size of a defect hidden in solid, elastic wave propagation in the solid is calculated with the dynamic finite element method. Second, the back-propagation neural network is trained using the calculated relationships between the defect parameters and the dynamic responses of solid surface. Finally, the trained network is utilized to determine appropriate defect parameters from some measured dynamic responses of solid surface. The accuracy and efficiency of the present method are discussed in detail through the identification of size and location of a defect hidden in solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, A. R.; Windsor, C. G. 1989: The classification of defects from ultrasonic data using neural networks: The Hopfield method. NDT International 22: 97–105

    Google Scholar 

  • Berry, D.; Upda, L.; Upda, S. S. 1991: Classification of ultrasonic signal via neural networks. In: Thompson, D. O.: Chimenti, D. E. (eds.); Review of Progress in Quantitative Nondestructive Evaluation 10A: 659–666. New York: Plenum Press

    Google Scholar 

  • Blake, R. J.; Bond, L. J. 1990: Rayleigh wave scattering from surface features: wedges and down-steps. Ultrasonics 28: 214–228

    Google Scholar 

  • Bond, L. J.; Taylor, J. 1991: Interaction of Rayleigh waves with a rib attached to a plate. Ultrasonics 29: 451–458

    Google Scholar 

  • Brown, L. M.; DeNale, R. 1991: Classification of ultrasonic defect signatures using an artificial neural network. In: Thompson, D. O.; Chimenti, D. E. (eds.); Review of Progress in Quantitative Nondestructive Evaluation 10A: 705–712. New York: Plenum Press

    Google Scholar 

  • Cichocki, A.; Unbehauen, R. 1993: Neural networks for optimization and signal processing. John Wiley and Sons

  • Damarla, T. R.; Karpur, P.; Bhagat, P. K. 1992: A self-learning neural net for ultrasonic signal analysis. Ultrasonics 30: 317–324

    Google Scholar 

  • Elman, J. L.; Zipser, D. 1988: Learning the hidden structure of speech. Journal of the Acoustical Society of America 83: 1615–1626

    Google Scholar 

  • Funahashi, K. 1989: On the approximate realization of continuous mappings by neural networks. Neural Networks 2: 183–192

    Google Scholar 

  • Galdos, A.; Okuda, H.; Yagawa, G. 1990: Finite element simulation of ultrasonic wave propagation in pipe and pressure vessel walls. Finite Elements in Analysis and Design 7: 1–13

    Google Scholar 

  • Georgiou, G. A.; and Bond, L. J. 1987: Quantitave studies in ultrasonic wave-defect interaction. Ultrasonics 25: 328–334

    Google Scholar 

  • Grabec, I.; Sachse, W. 1989. Application of an intelligent signal processing system to accoustic emission analysis. Journal of the Acoustical Society of America 85: 1226–1235

    Google Scholar 

  • Harumi, K. 1986: Computer simulation of ultrasonics in a solid. NDT International 19: 315–332

    Google Scholar 

  • Hirao, M.; Fukuoka, H.; Miura, Y. 1982: Scattering of Rayleigh surface waves by edge cracks: numerical simulation and experiment. Journal of the Acoustical Society of America 72: 602–606

    Google Scholar 

  • Hirose, Y.; Yamashita, K.; Hijiya, S. 1991: Back-propagation algorithm which varies the number of hidden units. Neural Networks 4: 61–66

    Google Scholar 

  • Homma, K.; Yuki, H. 1991: AE source analysis by means of a neural network (1st report): Calculations of artificial waveforms. Transactions of the Japan Society of Mechanical Engineers 57A: 1916–1921 (in Japanese)

    Google Scholar 

  • Kitano, H. 1990: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4: 461–476

    Google Scholar 

  • Kitahara, M.; Achenbach, J. D.; Guo, Q. C.; Peterson, M.; Ogi, T.; Notake, M. 1991: Depth determination of surface-breaking cracks by a neural network. In: Thompson, D. O.; Chimenti, D. E. (eds.), Review of Progress in Quantitative Nondestructive Evaluation 10A: 698–696. New York: Plenum Press

    Google Scholar 

  • Kubo, S. 1992: Classification of inverse problems arising in field problems and their treatment. In: Proceedings of IUTAM Symposium on Inverse Problems in Engineering Mechanics, 51–60. Springer-Verlag

  • Lewis, T. G.; El-Rewini, H. 1992: Introduction to Parallel Computing. Prentice-Hall

  • Ludwig, R.; Lord, W. 1985: A finite element formulation for ultrasonic NDT modeling. In: Thompson, D. O.; Chimenti, D. E. (eds.); Review of Progress in Quantitative Nondestructive Evaluation 4A: 37–43. New York: Plenum Press

    Google Scholar 

  • Ludwig, R.; Lord, W. 1988: A finite-element study of ultrasonic wave propagation and scattering in an Alminum block. Materials Evaluation 46: 108–113

    Google Scholar 

  • Mann, J. M.; Schmerr, L. W.; Moulder, J. C. 1991: Neural network inversion of uniform-field eddy current data. Materials Evaluation 49: 34–39

    Google Scholar 

  • Ogi, T.; Notake, M.; Yabe, Y.; Kitahara, M. 1991: Application of neural network to classification of defects: basic study of weights. In: Thompson, D. O.; Chimenti, D. E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation 10A: 683–688. New York: Plenum Press

    Google Scholar 

  • Peretto, P. 1992: An Introduction to the Modeling of Neural Networks. Cambridge U.P.

  • Pratt, D.; Sansalone, M. 1991: The use of a neural network for automating impact-echo signal interpretation. In: Thompson, D. O.; Chimenti, D. E. (eds.); Review of Progress in Quantitative Nondestructive Evaluation 10A: 667–674 New York: Plenum Press

    Google Scholar 

  • Rumelhart, D. E.; McClelland, J. L.; the PDP research group 1986: Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. MIT press

  • Sietsma, J.; Dow, R. J. F. 1991: Creating artificial neural networks that generalize. Neural Networks 4: 67–79

    Google Scholar 

  • Song, S. J.; Schmerr, Jr, L. W. 1991: Ultrasonic flaw classification in weldments using neural networks. In: Thompson, D. O.; Chimenti, D. E. (eds.), Review of Progress in Quantitative Nondestructive Evaluation 10A: 697–704 New York: Plenum Press

    Google Scholar 

  • Thompson, R. B. 1983: Quantitative ultrasonic nondestructive evaluation methods. Trans. ASME, Journal of Applied Mechanics 50: 1191–1201

    Google Scholar 

  • Thomsen, J. J.; Lund, K. 1991: Quality control of composite materials by neural network analysis of ultrasonic power spectra. Materials Evaluation 49: 594–600

    Google Scholar 

  • Upda, L.; Upda, S. S. 1990: Eddy current defect characterization using neural networks. Materials Evaluation 48: 342–347

    Google Scholar 

  • Wu, X.; Ghaboussi, J.; Garrett, Jr, J. H. 1992: Use of neural networks in detection of structural damage. Computers and Structures 42: 649–659

    Google Scholar 

  • Yagawa, G.; Yoshimura, S.; Mochizuki, Y.; Ohishi, T. 1993: Identification of crack shape hidden in solid by means of neural network and computational mechanics. In: Proceedings of IUTAM Symposium on Inverse Problems in Engineering Mechanics, 213–222. Springer-Verlag

  • Yagawa, G.; Yoshioka, A.; Yoshimura, S.; Soneda, N. 1993: A parallel finite element method with supercomputer network. Computers and Structures 47: 407–418

    Google Scholar 

  • Yoshimura, S.; Yagawa, G. 1993: Inverse analysis by means of neural network and computational mechanics (Its application to structural identification of vibrating plates). In: Inverse Problems (Specialized Monograph of International Conference on Computational Engineering Science (ICES'92)), 184–193. Atlanta Technology Publications

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 20 September 1994

This work is financially supported by the Grant-in-Aid for the scientific research of the Ministry of Education, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, A., Yamada, K., Yoshimura, S. et al. Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics. Computational Mechanics 15, 521–533 (1995). https://doi.org/10.1007/BF00350265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350265

Keywords

Navigation