Skip to main content
Log in

Cytoarchitectural organization of the electromotor system in the electric catfish (Malapterurus electricus)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The cytoarchitectural organization of the electromotor system of the electric catfish (Malapterurus electricus) was investigated in order to obtain insight into the neuronal reorganization accompanying the functional transition of a presumptive previous motor system to an electromotor system eliciting electric organ discharge. The electric catfish possesses two giant electromotoneurons situated within the rostral spinal cord. Intracellular dye injections have revealed the enormous extension of the dendritic tree of electromotoneurons. About 50 primary dendrites span the entire lateral funicle and intermediate grey matter, and reveal an extensive contralateral projection. The giant dendritic tree (1.2 mm in rostrocaudal direction) presumably receives inputs from all ascending and descending pathways of the spinal cord. Electromotoneurons and motoneurons receive the same type of fibre inputs, and electromotoneurons and interneurons are connected through common presynaptic elements. The innervation pattern of the electromotoneurons and spinal motoneurons is similar. Synaptic terminals with round synaptic vesicles often reveal chemical contacts and gap junctions. Furthermore, dendrites of the two electromotoneurons form juxtapositions (ephapses) with each other and also with spinal interneurons. Our results suggest that the two electromotoneurons are homologous to median (primary) spinal motoneurons and are the central structures of the electromotor system within the central nervous system of the electric catfish. A high capability of information processing can be attributed to the giant dendritic trees from functional considerations. This presumably enables the electromotoneurons to elicit an electric organ discharge in different behavioural contexts with a minimum of functional reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer R (1968) Untersuchungen zur Entladungstätigkeit und zum Beutefangverhalten des Zitterwelses Malapterurus electricus Gmelin 1789 (Siluroidea, Malapteruridae, Lacep. 1803). Z Vergl Physiol 59:371–402

    Google Scholar 

  • Belbenoit P, Moller P, Serrier J, Push S (1979) Ethological observations on the electric organ discharge behaviour of the electric catfish, Malapterurus electricus (Pisces). Behav Ecol Sociobiol 4:321–330

    Google Scholar 

  • Bennett MVL, Auerbach AA (1969) Calculation of electrical coupling of cells separated by a gap. Anat Rec 163:152

    Google Scholar 

  • Bennett MVL, Nakajima Y, Pappas GD (1967) Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J Neurophysiol 30:209–235

    Google Scholar 

  • Bilharz T (1857) Das elektrische Organ des Zitterwelses. Engelmann, Leipzig

    Google Scholar 

  • Braun N, Schikorski T, Zimmermann H (1990) Structural and immunocytochemical characterization of the giant electromotoneuron of the electric catfish Malapterurus electricus. In: Pfannenstiel H-D (ed) 83. Jahresversammlung der Deutschen Zoologischen Gesellschaft. Fischer, Stuttgart New York, p 631

    Google Scholar 

  • Cruce WLR, Newman DB (1984) Evolution of motor systems: the reticulospinal pathways. Am Zool 24:733–753

    Google Scholar 

  • De Oliveira Castro G (1961) Morphological data on the brain of Electrophorus electricus. In: Chagas C, Paes de Carvalho A (eds) Bioelectrogenesis. Elsevier, Amsterdam, pp 171–184

    Google Scholar 

  • Diamond J, Yasargil GM (1969) Synaptic function in the fish spinal cord: dendritic integration. Prog Brain Res 31:201–209

    Google Scholar 

  • Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York Chichester Brisbane, pp 71–102

    Google Scholar 

  • Eaton RC, DiDomenico R, Nissanov J (1991) Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behav Evol 37:272–285

    Google Scholar 

  • Erulkar SD, Soller RW (1980) Interactions among lumbar motoneurons on opposite sides of the frog spinal cord: morphological and electrophysiological studies. J Comp Neurol 192:473–488

    Google Scholar 

  • Fetcho J (1986) The organization of the motoneurons innervating the axial musculature of vertebrates. I. Goldfish (Carassius auratus) and mudpuppies (Necturus maculosus). J Comp Neurol 249:521–550

    Google Scholar 

  • Fetcho J (1987) A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res Rev 12:243–280

    Google Scholar 

  • Fox GQ (1977) The morphology of the oval nuclei of neonatal Torpedo marmorata. Cell Tissue Res 178:155–167

    Google Scholar 

  • Fritsch G (1883) Die elektrischen Fische im Lichte der Deszendenzlehre. In: Virchow R, Holtzendorff FR von (eds) Sammlung gemeinverständlicher wissenschaftlicher Vorträge, Serie 18. Habel, Berlin, pp 835–898

    Google Scholar 

  • Fritsch G (1887) Die elektrischen Fische. Erste Abteilung Malapterurus electricus. Veit, Leipzig

    Google Scholar 

  • Gallyas F (1979) Light insensitive physical developers. Stain Technol 54:173–176

    Google Scholar 

  • Görcs T, Antal M, Oláh É, Székely G (1979) An improved cobalt labelling technique with complex compounds. Acta Biol Acad Sci Hung 30:79–86

    Google Scholar 

  • Grillner S, Buchanan JT, Wallén P, Brodin L (1989) Neural control of locomotion in lower vertebrates: from behavior to ionic mechanisms. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, Chichester Brisbane, pp 1–40

    Google Scholar 

  • Janetzko A, Zimmermann H, Volknandt W (1987) The electromotor system of the electric catfish (Malapterurus electricus): a fine-structural analysis. Cell Tissue Res 247:613–624

    Google Scholar 

  • Johnels AG (1957) On the origin of the electric organ in Malapterurus electricus. Q J Microsc Sci 97:455–464

    Google Scholar 

  • Kashin S, Brill R, Ikehara W, Dizon A (1981) Induced locomotion by midbrain stimulation in restrained skip jack tuna, Katsuwonus pelamis. J Exp Zool 216:327–329

    Google Scholar 

  • Kimmel CB (1982) Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio rerio. Prog Brain Res 57:1–24

    Google Scholar 

  • Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127

    Google Scholar 

  • Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond [Biol] 298:227–264

    Google Scholar 

  • Krenz WD (1985) Morphological and electrophysiological properties of the electromotoneurones of the electric ray Torpedo marmorata in vivo and in vitro brain slices. Comp Biochem Physiol 82A:59–65

    Google Scholar 

  • Livingston CA, Leonard RB (1990) Locomotion evoked by stimulation of the brain stem in the Atlantic stingray, Dasyatis sabina. J Neurosci 10:194–204

    Google Scholar 

  • Mahy G (1970) Les deux types morphologique de la famille des Malapteruridae (Pisces — Ostariophysi). Naturaliste Can 97:387–399

    Google Scholar 

  • Maurer F (1913) Die ventrale Rumpfmuskulatur der Fische (Selachier, Ganoiden, Teleostier, Crossopterygier, Dipnoer). Jen Z 49:1

    Google Scholar 

  • McClellan AD (1986) Command systems for initiating locomotion in fish and amphibians: parallels to initiation systems in mammals. In: Grillner S, Stein PSG, Stuart DG, Frossberg H, Herman RM (eds) Neurobiology of vertebrate locomotion. Macmillan, London, pp 3–20

    Google Scholar 

  • Meszler RM, Pappas GD, Bennett MVL (1974) Morphology of electromotor system in the spinal cord of the electric eel, Electrophorus electricus. J Neurocytol 3:251–261

    Google Scholar 

  • Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159

    Google Scholar 

  • Meyers PZ (1985) Spinal motoneurons of the larval zebrafish. J Comp Neurol 236:555–561

    Google Scholar 

  • Poll M, Gosse JP (1969) Revison des Malapteruridae (Pisces, Siluriformes) et description d'une deuxieme espece de silure electrique: Malapterurus microstoma SP.N.. Bull Inst R Sci Nat Belg 45:1–12

    Google Scholar 

  • Rao PPD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108

    Google Scholar 

  • Roberts BL, Ryan KP (1975) Cytological features of the giant neurons controlling electric discharge in the ray, Torpedo. J Mar Biol Assoc UK 55:123–131

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Schikorski T, Zimmermann H (1989) Innervation of the giant electromotor neuron of the electric catfish (Malapterurus electricus). In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Proceedings of the 17th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 236

    Google Scholar 

  • Schikorski T, Braun N, Zimmermann H (1990) Neuronal control of the electric catfish electric response: functional and structural relations. In: Elsner N, Roth G (eds) Brain, perception, cognition. Proceedings of the 18th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 93

    Google Scholar 

  • Schnitzlein HN, Brown HK (1975) Spinal motoneurons of the goldfish (Carassius auratus). Brain Behav Evol 12:207–228

    Google Scholar 

  • Székely G (1976) The morphology of motoneurons and dorsal root fibres in the frog's spinal cord. Brain Res 103:275–290

    Google Scholar 

  • Tuge H, Uchihaski K, Shimamura H (1968) An atlas of the brains of fishes in Japan. Tsukiji Shokan, Tokyo

    Google Scholar 

  • Uchizono K (1974) Excitation and inhibition; synaptic morphology. Igaten Shoin, Tokyo Elsevier, Amsterdam

    Google Scholar 

  • Yasargil GM, Diamond J (1968) Startle-response in teleost fish: an elementary circuit for neural discrimination. Nature 220:241–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schikorski, T., Braun, N. & Zimmermann, H. Cytoarchitectural organization of the electromotor system in the electric catfish (Malapterurus electricus). Cell Tissue Res 269, 481–493 (1992). https://doi.org/10.1007/BF00353903

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353903

Key words

Navigation